Do you want to publish a course? Click here

Enhancement and suppression of surface plasmon resonance in Ag aggregate by optical gain and absorption in surrounding dielectric medium

204   0   0.0 ( 0 )
 Added by Mikhail Noginov
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed the compensation of loss in metal by gain in interfacing dielectric in the mixture of aggregated silver nanoparticles and rhodamine 6G dye. The demonstrated six-fold enhancement of the Rayleigh scattering is the evidence of the increase of the quality factor of the surface plasmon (SP) resonance. The reported experimental observation paves the road to many practical applications of nanoplasmonics. We have also predicted and experimentally observed a suppression of the surface SP resonance in metallic nanoparticles embedded in a dielectric host with absorption.



rate research

Read More

We report the suppression of loss of surface plasmon polariton propagating at the interface between silver film and optically pumped polymer with dye. Large magnitude of the effect enables a variety of applications of active nanoplasmonics. The experimental study is accompanied by the development of the analytical description of the phenomenon and the solution of the controversy regarding the direction of the wavevector of a wave with a strong evanescent component in an active medium.
The use of photonic crystal and negative refractive index materials is known to improve resolution of optical microscopy and lithography devices down to 80 nm level. Here we demonstrate that utilization of well-known digital image recovery techniques allows us to further improve resolution of optical microscope down to 30 nm level. Our microscope is based on a flat dielectric mirror deposited onto an array of nanoholes in thin gold film. This two-dimensional photonic crystal mirror may have either positive or negative effective refractive index as perceived by surface plasmon polartions in the visible frequency range. The optical images formed by the mirror are enhanced using simple digital filters.
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.
Nanometer-sized metal particles exhibit broadening of the localized surface plasmon resonance (LSPR) in comparison to its value predicted by the classical Mie theory. Using our model for the LSPR dependence on non-local surface screening and size quantization, we quantitatively relate the observed plasmon width to the nanoparticle radius $R$ and the permittivity of the surrounding medium $epsilon_m$. For Ag nanospheres larger than 8 nm only the non-local dynamical effects occurring at the surface are important and, up to a diameter of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR width is inversely proportional to the particle size and has a nonmonotonic dependence on the permittivity of the host medium, exhibiting for Ag a maximum at $epsilon_mapprox2.5$. Our calculated LSPR width is compared with recent experimental data.
Recently, guiding electromagnetic surface waves without sacrificing scattering losses through paths that have arbitrary shape bumps has gained a lot of interest due to its wealth of advantages in modern photonics and plasmonics devices. In this study, based on transformation optics (TO) methodology, a feasible approach to control the flow of surface plasmon plariton (SPPs) at metal-dielectric interfaces with arbitrary curvature is proposed. The obtained material becomes homogeneous and independent of the bumps geometry. That is, one constant material is required to route SPP waves without scattering the energy into the far-field region, which overcome the bottlenecks encountered in the previous works. Several numerical simulations are carried out to illustrate the capability of the propounded cloak to control the SPP flows at metal/dielectric interfaces. The unique designing approach introduced here may open a new horizon to nano-optics and downscaling of photonic circuits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا