We show both theoretically and experimentally that an electromagnetic wave can be totally absorbed by an overdense plasma when a subwavelength diffraction grating is placed in front of the plasma surface. The absorption is due to dissipation of surface plasma waves (plasmons-polaritons) that have been resonantly excited by the evanescent component of the diffracted electromagnetic wave. The developed theoretical model allows one to determine the conditions for the total absorption.
We have shown both experimentally and theoretically that polarization-independent broad-band absorption of electromagnetic waves by an overdense plasma, caused by surface plasmon-polaritons (SPP) excitation, can be achieved due to combination of two factors: a non-zero angle of incidence and a two-dimensional circular diffraction grating placed at a properly chosen distance in front of the plasma boundary. Direct detection of SPP has been achieved for the first time using a miniature antenna imbedded in the plasma.
Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowskis tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abrahams tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.
The interaction of ultra-intense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and X-rays. The accelerating structure is a plasma wave, or wakefield, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely on the laser envelope and not on its exact waveform. Here, we use near-single-cycle laser pulses with a controlled carrier-envelope-phase (CEP) to show that the actual waveform of the laser field has a clear impact on the plasma response. We measure relativistic electron beams that are found to be strongly CEP dependent, implying that we achieve waveform control of electron dynamics in underdense laser-plasma interaction. Our results pave the way to high precision, sub-cycle control of electron injection in plasma accelerators, enabling the production of attosecond relativistic electron bunches and X-rays.
An analytical method for diffraction of a plane electromagnetic wave at periodically-modulated graphene sheet is presented. Both interface corrugation and periodical change in the optical conductivity are considered. Explicit expressions for reflection, transmission, absorption and transformation coefficients in arbitrary diffraction orders are presented. The dispersion relation and decay rates for graphene plasmons of the grating are found. Simple analytical expressions for the value of the band gap in the vicinity of the first Brillouin zone edge is derived. The optimal amplitude and wavelength, guaranteeing the best matching of the incident light with graphene plasmons are found for the conductivity grating. The analytical results are in a good agreement with first-principle numeric simulations.
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquires a vortex structure as well. A generic feature of such THz vortex is that the intensity is modulated along the azimuthal angle, which can be attributed to the spatially varying relative phase difference between the two pump harmonics. Fully space and time resolved numerical simulations reveal that transverse instabilities of the pump further affect the emitted THz field along nonlinear propagation, which produces additional singularities resulting in a rich vortex structure. The predicted intensity modulation is experimentally demonstrated with a thermal camera, in excellent agreement with simulation results. The presence of phase singularities in the experiment is revealed by astigmatic transformation of the beam using a cylindrical mirror.