We analyze data from four GPS campaigns carried out between 1997 and 2002 on a network of 11 sites in the Suez-Sinai, the area of collision between the African and the Arabian plates. This is the key area to understand how and in which way Sinai behaves like a sub-plate of the African plate and the role played between seismic and geodetic (long term) deformation release. Our analysis shows that, on average, the Suez-Sinai area motion (in terms of ITRF00 velocities) matches African plate motion (NNR-NUVEL-1A model). However, the baseline length variations show transient deformations in Sinai and across the Gulf of Suez, reaching up a maximum value of about 1.5 cm in five years. Since current geodynamical models do not predict significant tectonic deformation in this area, we worked under the hypothesis that a contribute may be due to post-seismic relaxation. Under this hypothesis, we compared the baselines length variations with the post-seismic relaxation field associated with five major local earthquakes occurred in the area, testing two different viscoelastic models. Our results show that the transient deformations are better modelled for viscosity values of 1018 Pa s in the lower crust and 1020 Pa s in the asthenosphere. However, since the modelled post-seismic effect results modest and a certain amount of the detected deformation is not accounted for, we think that an improved modelling should take into account the lateral heterogeneities of crust and upper mantle structures.