Do you want to publish a course? Click here

From Baking a Cake to Solving the Schrodinger Equation

64   0   0.0 ( 0 )
 Added by Edward Olszewski
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes of classic French cuisine, we have obtained a semi-empirical formula for its baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The formula, which is based on the Diffusion equation, has three adjustable parameters whose values are estimated from data obtained by baking genoises in cylindrical pans of various diameters. The resulting formula for the baking time exhibits the scaling behavior typical of diffusion processes, i.e. the baking time is proportional to the (characteristic length scale)^2 of the cake. It also takes account of evaporation of moisture at the top surface of the cake, which appears to be a dominant factor affecting the baking time of a cake. In solving this problem we have obtained solutions of the Diffusion equation which are interpreted naturally and straightforwardly in the context of heat transfer; however, when interpreted in the context of the Schrodinger equation, they are somewhat peculiar. The solutions describe a system whose mass assumes different values in two different regions of space. Furthermore, the solutions exhibit characteristics similar to the evanescent modes associated with light waves propagating in a wave guide. When we consider the Schrodinger equation as a non-relativistic limit of the Klein-Gordon equation so that it includes a mass term, these are no longer solutions.



rate research

Read More

Quantum technology is seeing a remarkable explosion in interest due to a wave of successful commercial technology. As a wider array of engineers and scientists are needed, it is time we rethink quantum educational paradigms. Current approaches often start from classical physics, linear algebra, or differential equations. This chapter advocates for beginning with probability theory. In the approach outlined in this chapter, there is less in the way of explicit axioms of quantum mechanics. Instead the historically problematic measurement axiom is inherited from probability theory where many philosophical debates remain. Although not a typical route in introductory material, this route is nonetheless a standard vantage on quantum mechanics. This chapter outlines an elementary route to arrive at the Schrodinger equation by considering allowable transformations of quantum probability functions (density matrices). The central tenet of this chapter is that probability theory provides the best conceptual and mathematical foundations for introducing the quantum sciences.
We show that a pseudospectral representation of the wavefunction using multiple spatial domains of variable size yields a highly accurate, yet efficient method to solve the time-dependent Schrodinger equation. The overall spatial domain is split into non-overlapping intervals whose size is chosen according to the local de Broglie wavelength. A multi-domain weak formulation of the Schrodinger equation is obtained by representing the wavefunction by Lagrange polynomials with compact support in each domain, discretized at the Legendre-Gauss-Lobatto points. The resulting Hamiltonian is sparse, allowing for efficient diagonalization and storage. Accurate time evolution is carried out by the Chebychev propagator, involving only sparse matrix-vector multiplications. Our approach combines the efficiency of mapped grid methods with the accuracy of spectral representations based on Gaussian quadrature rules and the stability and convergence properties of polynomial propagators. We apply this method to high-harmonic generation and examine the role of the initial state for the harmonic yield near the cutoff.
The direct simulation of the dynamics of second sound in graphitic materials remains a challenging task due to lack of methodology for solving the phonon Boltzmann equation in such a stiff hydrodynamic regime. In this work, we aim to tackle this challenge by developing a multiscale numerical scheme for the transient phonon Boltzmann equation under Callaways dual relaxation model which captures well the collective phonon kinetics. Comparing to traditional numerical methods, the present multiscale scheme is efficient, accurate and stable in all transport regimes attributed to avoiding the use of time and spatial steps smaller than the relaxation time and mean free path of phonons. The formation, propagation and composition of ballistic pulses and second sound in graphene ribbon in two classical paradigms for experimental detection are investigated via the multiscale scheme. The second sound is declared to be mainly contributed by ZA phonon modes, whereas the ballistic pulses are mainly contributed by LA and TA phonon modes. The influence of temperature, isotope abundance and ribbon size on the second sound propagation is also explored. The speed of second sound in the observation window is found to be at most 20 percentages smaller than the theoretical value in hydrodynamic limit due to the finite umklapp, isotope and edge resistive scattering. The present study will contribute to not only the solution methodology of phonon Boltzmann equation, but also the physics of transient hydrodynamic phonon transport as guidance for future experimental detection.
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does not require the explicit evaluation of dielectric matrices nor of virtual electronic states, and can be easily applied without resorting to the random phase approximation. In addition it utilizes localized orbitals obtained from Bloch states using bisection techniques, thus greatly reducing the complexity of the calculation and enabling the efficient use of hybrid functionals to obtain single particle wavefunctions. We report exciton binding energies of several molecules and absorption spectra of condensed systems of unprecedented size, including water and ice samples with hundreds of atoms.
We solve rigorously the time dependent Schrodinger equation describing electron emission from a metal surface by a laser field perpendicular to the surface. We consider the system to be one-dimensional, with the half-line $x<0$ corresponding to the bulk of the metal and $x>0$ to the vacuum. The laser field is modeled as a classical electric field oscillating with frequency $omega$, acting only at $x>0$. We consider an initial condition which is a stationary state of the system without a field, and, at time $t=0$, the field is switched on. We prove the existence of a solution $psi(x,t)$ of the Schrodinger equation for $t>0$, and compute the surface current. The current exhibits a complex oscillatory behavior, which is not captured by the simple three step scenario. As $ttoinfty$, $psi(x,t)$ converges with a rate $t^{-frac32}$ to a time periodic function with period $frac{2pi}{omega}$ which coincides with that found by Faisal, Kaminski and Saczuk (Phys Rev A 72, 023412, 2015). However, for realistic values of the parameters, we have found that it can take quite a long time (over 50 laser periods) for the system to converge to its asymptote. Of particular physical importance is the current averaged over a laser period $frac{2pi}omega$, which exhibits a dramatic increase when $hbaromega$ becomes larger than the work function of the metal, which is consistent with the original photoelectric effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا