Do you want to publish a course? Click here

Accelerator Tests of Crystal Undulators

227   0   0.0 ( 0 )
 Added by Valery M. Biryukov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

A series of Silicon crystal undulator samples were produced based on the approach presented in PRL 90 (2003) 034801, with the periods of undulation from 0.1 mm to 1 mm, and the number of periods on the order of 10. The samples were characterized by X-rays, revealing the sine-like shape of the crystal lattice in the bulk. Next step in the characterization has been the channeling tests done with 70 GeV protons, where good channeling properties of the undulated Silicon lattice have been observed. The photon radiation tests of crystal undulators with high energy positrons are in progress on several locations: IHEP Protvino, LNF Frascati, and CERN SPS. The progress in the experimental activities and the predictions from detailed simulations are reported.

rate research

Read More

345 - P.O. Kazinski , V.A. Ryakin 2021
The explicit expressions for the average number of twisted photons radiated by a charged particle in an elliptical undulator in the classical approximation as well as in the approach accounting for the quantum recoil are obtained. It is shown that radiation emitted by a particle moving along an elliptical helix which evolves around the axis specifying the angular momentum of twisted photons obeys the selection rule: $m+n$ is an even number, where $m$ is a projection of the total angular momentum of a twisted photon and $n$ is the harmonic number of the undulator radiation. This selection rule is a generalization of the previously known selection rules for radiation of twisted photons by circular and planar undulators and it holds for both classical and quantum approaches. The class of trajectories of charged particles that produce the twisted photon radiation obeying the aforementioned selection rule is described.
Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at the top of the bandgap. The effect is explained quite generally from photonic band and perturbation theoretical arguments. Transverse wakefields resulting from this effect are observed in a hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields are, on average, an order of magnitude higher than those in the waveguide-damped Compact Linear Collider (CLIC) copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept) can dramatically improve HOM damping in PhC-based structures.
New crystal technique - array of bent strips and a fan-type reflector, based on thin straight plates - have been used for research of extraction and collimation a circulating beam in the U-70 accelerator at the energy 50 GeV and 1.3 GeV. It is shown, that new devices can effectively steer a beam in a wide energy range. For protons with energy 50 GeV efficiency of extraction and collimation about 90 % has been achieved which is record for this method. Reduction of particle losses in 2-3 times was observed also in accelerator at application of different crystals in comparison with the usual one-stage collimation scheme of beam with a steel absorber.
The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure simply consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the soft X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime. We illustrate this fact for the SASE3 beamline. The FEL code Genesis has been extensively used for these studies. Based on these findings we suggest that the requirements for the SASE3 instrument (SCS, SQS) and for the SASE3 beam transport system be updated.
Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise (SASE). In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton-Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the SPARC SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10-kW Upgrade Oscillator experiment at the Thomas Jefferson National Accelerator Facility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا