An imaging system for measuring the spatial distribtion of charged particle tracks in a low-pressure gas is presented. The method is based on an optically read out time projection chamber. Results of experiments with fast heavy ions are shown.
We describe first results obtained with a track structure imaging system for measuring the ionisation topology of charged particles in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triethylamine (TEA). Images of ionisation tracks of electrons, protons, and heavier ions are presented and analysed.
One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is finding and fitting particle tracks during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD and SIMT architectures that are now prevalent in high-performance hardware. Previously we observed significant parallel speedups, with physics performance comparable to CMS standard tracking, on Intel Xeon, Intel Xeon Phi, and (to a limited extent) NVIDIA GPUs. While early tests were based on artificial events occurring inside an idealized barrel detector, we showed subsequently that our mkFit software builds tracks successfully from complex simulated events (including detector pileup) occurring inside a geometrically accurate representation of the CMS-2017 tracker. Here, we report on advances in both the computational and physics performance of mkFit, as well as progress toward integration with CMS production software. Recently we have improved the overall efficiency of the algorithm by preserving short track candidates at a relatively early stage rather than attempting to extend them over many layers. Moreover, mkFit formerly produced an excess of duplicate tracks; these are now explicitly removed in an additional processing step. We demonstrate that with these enhancements, mkFit becomes a suitable choice for the first iteration of CMS tracking, and eventually for later iterations as well. We plan to test this capability in the CMS High Level Trigger during Run 3 of the LHC, with an ultimate goal of using it in both the CMS HLT and offline reconstruction for the HL-LHC CMS tracker.
We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay $K_L rightarrow pi^0 u bar{ u}$. The detector is important to suppress the background with charged particles to the level below the signal branching ratio predicted by the Standard Model (O(10$^{-11}$)). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than $1.5 times 10^{-5}$, which satisfies the requirement of the KOTO experiment determined from simulation studies.
A sealed high gas pressure detector working in pure argon is assembled. It consists of a 5 cm $times$ 5 cm PCB THGEM (THick Gaseous Electron Multipliers). The detector structure and experimental setup are described. The performances under high pressure of 2 atm mainly consist in selecting optimal voltages for ionization region and induction region. The dependence of the shape of Alpha particle spectra measured with relative gas gain on gas pressure (1.3 $sim$ 2.0 atm) has been studied. The 8 groups of relative gas gain versus working voltage of THGEM expressed by weighting filed $E/P$ are normalized, being consistent with theory. The results show that the air tightness of the chamber is good measured by a sensitive barometer and checked with gas gain. The experimental results are compared with Monte Carlo simulation on energy deposition without gas gain involved.
We report about a nuclear track imaging system which is designed to study in detail the ionization topology of charged particle tracks in a low-pressure gas. The detection method is based on a time projection chamber (TPC) filled with low-pressure triethylamine (TEA). Ionization electrons produced by energetic charged particles are three-dimensionally imaged by recording light from electron avalanches with an intensified CCD system. The detector permits to inves-tigate the spatial ionization distributions of particle tracks in gas, of equivalent length and resolution in tissue of 4 mm and 40 nm (RMS), respectively. We explain the relevance of this technique for dosimetry, describe the experimental method and the basic operation parameters. First results of the chamber response to protons and alpha particles are presented.
V.Dangendorf
,H.Schuhmacher
,U. Titt
.
(2004)
.
"Imaging of microscopic features of charged-particle tracks in a low-pressure gas"
.
Volker Dangendorf Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا