Do you want to publish a course? Click here

Bloch oscillations of ultracold atoms: a tool for a metrological determination of $h/m_{Rb}$

105   0   0.0 ( 0 )
 Added by M. Pierre Clade
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of $^{87}Rb$, using velocity selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined $h/m_{Rb}$ with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave set-up. This will allow us to measure $h/m_{Rb}$ better than $10^{-8}$ and hence the fine structure constant $alpha$ with an uncertainty close to the most accurate value coming from the ($g-2$) determination.



rate research

Read More

Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential energy curves and molecular parameters for several low lying states of the Rb, Yb$^+$ system. We employ both a multi-reference configuration interaction (MRCI) and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients are estimated from our {it ab initio} data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom ($alpha_d=128.4$ atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb,Rb$^+$) channels that were carried out in our work. However, we find that the pseudo potential approximation is rather limited in validity, and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
We describe a scheme for probing a gas of ultracold atoms trapped in an optical lattice and moving in the presence of an external potential. The probe is non-destructive and uses the existing lattice fields as the measurement device. Two counter-propagating cavity fields simultaneously set up a conservative lattice potential and a weak quantum probe of the atomic motion. Balanced heterodyne detection of the probe field at the cavity output along with integration in time and across the atomic cloud yield information about the atomic dynamics in a single run. The scheme is applied to a measurement of the Bloch oscillation frequency for atoms moving in the presence of the local gravitational potential. Signal-to-noise ratios are estimated to be as high as $10^4$.
150 - Olivier Morizot 2005
We propose a new kind of toroidal trap, designed for ultracold atoms. It relies on a combination of a magnetic trap for rf-dressed atoms, which creates a bubble-like trap, and a standing wave of light. This new trap is well suited for investigating questions of low dimensionality in a ring potential. We study the trap characteristics for a set of experimentally accessible parameters. A loading procedure from a conventional magnetic trap is also proposed. The flexible nature of this new ring trap, including an adjustable radius and adjustable transverse oscillation frequencies, will allow the study of superfluidity in variable geometries and dimensionalities.
We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm$^2$. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 $mu$m from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا