The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium and hydrogen atoms and molecules are presented. At very high intensity above saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments.
We present the numerical implementation of the time-dependent complete-active-space self-consistent-field (TD-CASSCF) method [Phys. Rev. A, 88, 023402 (2013)] for atoms driven by a strong linearly polarized laser pulse. The present implementation treats the problem in its full dimensionality and introduces a gauge-invariant frozen-core approximation, an efficient evaluation of the Coulomb mean field scaling linearly with the number of basis functions, and a split-operator method specifically designed for stable propagation of stiff spatial derivative operators. We apply this method to high-harmonic generation in helium, beryllium, and neon and explore the role of electron correlations.
We present an implementation of a time-dependent multiconfiguration self-consistent-field (TD-MCSCF) method [R. Anzaki et al., Phys. Chem. Chem. Phys. 19, 22008 (2017)] with the full configuration interaction expansion for coupled electron-nuclear dynamics in diatomic molecules subject to a strong laser field. In this method, the total wave function is expressed as a superposition of different configurations constructed from time-dependent electronic Slater determinants and time-dependent orthonormal nuclear basis functions. The primitive basis functions of nuclei and electrons are strictly independent of each other without invoking the Born-Oppenheimer approximation. Our implementation treats the electronic motion in its full dimensionality on curvilinear coordinates, while the nuclear wave function is propagated on a one-dimensional stretching coordinate with rotational nuclear motion neglected. We apply the present implementation to high-harmonic generation and dissociative ionization of a hydrogen molecule and discuss the role of electron-nuclear correlation.
The quasistatic limit of the velocity-gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linear polarized laser fields is derived. It is shown that in the low-frequency limit the ionization rate is proportional to the laser frequency, if a Coulombic long-range interaction is present. An expression for the corresponding proportionality coefficient is given. Since neither the saddle-point approximation nor the one of a small kinetic momentum is used in the derivation, the obtained expression represents the exact asymptotic limit. This result is used to propose a Coulomb correction factor. Finally, the applicability of the found asymptotic expression for non-vanishing laser frequencies is investigated.
A general {it ab-initio} and non-perturbative method to solve the time-dependent Schrodinger equation (TDSE) for the interaction of a strong attosecond laser pulse with a general atom, i.e., beyond the models of quasi-one-electron or quasi-two-electron targets, is described. The field-free Hamiltonian and the dipole matrices are generated using a flexible $B$-spline $R$-matrix method. This numerical implementation enables us to construct term-dependent, non-orthogonal sets of one-electron orbitals for the bound and continuum electrons. The solution of the TDSE is propagated in time using the Arnoldi-Lanczos method, which does not require the diagonalization of any large matrices. The method is illustrated by an application to the multi-photon excitation and ionization of Ne atoms. Good agreement with $R$-matrix Floquet calculations for the generalized cross sections for two-photon ionization is achieved.
Rapid-advancing intense laser technologies enable the possibility of a direct laser-nucleus coupling. In this paper the effect of intense laser fields on a series of nuclear fission processes, including proton decay, alpha decay, and cluster decay, is theoretically studied with the help of nuclear double folding potentials. The results show that the half-lives of these decay processes can be modified by non-negligible amounts, for example on the order of 0.01 or 0.1 percents in intense laser fields available in the forthcoming years. In addition to numerical results, an approximate analytical formula is derived to connect the laser-induced modification to the decay half-life and the decay energy.