No Arabic abstract
A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distances, L < 300, and persistent ones at L > 300 define this nontrivial structure. For some concrete examples of literary texts, the memory functions are obtained and their power-law behavior at long distances is disclosed. This property is shown to be a cause of self-similarity of texts with respect to the decimation procedure.
A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a memory function, and its relation to the correlation properties of the systems are examined. Various methods for finding the memory function via the correlation function are proposed. The inverse problem (calculation of the correlation function by means of the prescribed memory function) is also solved. This is demonstrated for the analytically solvable model of the system with a step-wise memory function.
We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage, stable clusters of two opinions, A and B exist. Then we introduce contrarians which hold a strong B opinion into the opinion A group. Through their interactions, the contrarians are able to decrease the size of the largest A opinion cluster, and even destroy it. We see this kind of method in operation, e.g when companies send free new products to potential customers in order to convince them to adopt the product and influence others. We study the CO model, using two different strategies, on both ER and scale-free networks. In strategy I, the contrarians are positioned at random. In strategy II, the contrarians are chosen to be the highest degrees nodes. We find that for both strategies the size of the largest A cluster decreases to zero as p increases as in a phase transition. At a critical threshold value p_c the system undergoes a second-order phase transition that belongs to the same universality class of mean field percolation. We find that even for an ER type model, where the degrees of the nodes are not so distinct, strategy II is significantly more effctive in reducing the size of the largest A opinion cluster and, at very small values of p, the largest A opinion cluster is destroyed.
A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys. Rev. Lett. 90, 110601 (2003) is generalized to the biased case (non equal numbers of zeros and unities in the chain). In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.
Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.
We review briefly the concepts underlying complex systems and probability distributions. The later are often taken as the first quantitative characteristics of complex systems, allowing one to detect the possible occurrence of regularities providing a step toward defining a classification of the different levels of organization (the ``universality classes). A rapid survey covers the Gaussian law, the power law and the stretched exponential distributions. The fascination for power laws is then explained, starting from the statistical physics approach to critical phenomena, out-of-equilibrium phase transitions, self-organized criticality, and ending with a large but not exhaustive list of mechanisms leading to power law distributions. A check-list for testing and qualifying a power law distribution from your data is described in 7 steps. This essay enlarges the description of distributions by proposing that ``kings, i.e., events even beyond the extrapolation of the power law tail, may reveal an information which is complementary and perhaps sometimes even more important than the power law distribution. We conclude a list of future directions.