Do you want to publish a course? Click here

New Results on DEPFET Pixel Detectors for Radiation Imaging and High Energy Particle Detection

104   0   0.0 ( 0 )
 Added by N. Wermes
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

DEPFET pixel detectors are unique devices in terms of energy and spatial resolution because very low noise (ENC = 2.2e at room temperature) operation can be obtained by implementing the amplifying transistor in the pixel cell itself. Full DEPFET pixel matrices have been built and operated for autoradiographical imaging with imaging resolutions of 4.3 +- 0.8 um at 22 keV. For applications in low energy X-ray astronomy the high energy resolution of DEPFET detectors is attractive. For particle physics, DEPFET pixels are interesting as low material detectors with high spatial resolution. For a Linear Collider detector the readout must be very fast. New readout chips have been designed and produced for the development of a DEPFET module for a pixel detector at the proposed TESLA collider (520x4000 pixels) with 50 MHz line rate and 25 kHz frame rate. The circuitry contains current memory cells and current hit scanners for fast pedestal subtraction and sparsified readout. The imaging performance of DEPFET devices as well as present achievements towards a DEPFET vertex detector for a Linear Collider are presented.



rate research

Read More

The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $mathrm{mathbf{mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $mathbf{e^+ e^-}$ collider.
This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.
Hydrogenated amorphous silicon (a-Si:H) has remarkable radiation resistance properties and can be deposited on a lot of different substrates. A-Si:H based particle detectors have been built since mid 1980s as planar p-i-n or Schottky diode structures; the thickness of these detectors ranged from 1 to 50 micron. However MIP detection using planar structures has always been problematic due to the poor S/N ratio related to the high leakage current at high depletion voltage and the low charge collection efficiency. The usage of 3D detector architecture can be beneficial for the possibility to reduce inter-electrode distance and increase the thickness of the detector for larger charge generation compared to planar structures. Such a detector can be used for future hadron colliders for its radiation resistance and also for X-ray imaging. Furthermore the possibility of a-Si:H deposition on flexible materials (like kapton) can be exploited to build flexible and thin beam flux measurement detectors and x-ray dosimeters.
A fiber detector concept has been realized allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occupancy. Three full size prototypes have been build by different producers and tested at a 3 GeV electron beam at DESY. After 3 m of light guides 8-10 photoelectrons were registrated by multichannel photomultipliers providing an efficiency of more than 99%. Using all available data a resolution of 0.086 mm was measured.
48 - Hans Krueger 2005
The demands on detectors for particle detection as well as for medical and astronomical X-ray imaging are continuously pushing the development of novel pixel detectors. The state of the art in pixel detector technology to date are hybrid pixel detectors in which sensor and read-out integrated circuits are processed on different substrates and connected via high density interconnect structures. While these detectors are technologically mastered such that large scale particle detectors can be and are being built, the demands for improved performance for the next generation particle detectors ask for the development of monolithic or semi-monolithic approaches. Given the fact that the demands for medical imaging are different in some key aspects, developments for these applications, which started as particle physics spin-off, are becomming rather independent. New approaches are leading to novel signal processing concepts and interconnect technologies to satisfy the need for very high dynamic range and large area detectors. The present state in hybrid and (semi-)monolithic pixel detector development and their different approaches for particle physics and imaging application is reviewed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا