Do you want to publish a course? Click here

Fast and accurate molecular Hartree-Fock with a finite-element multigrid method

253   0   0.0 ( 0 )
 Added by Oliver Beck
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multigrid scheme for the solution of finite-element Hartree-Fock equations for diatomic molecules. It is shown to be fast and accurate, the time effort depending linearly on the number of variables. Results are given for the molecules LiH, BH, N_2 and for the Be atom in our molecular grid which agrees very well with accurate values from an atomic code. Highest accuracies were obtained by applying an extrapolation scheme; we compare with other numerical methods. For N_2 we get an accuracy below 1 nHartree.



rate research

Read More

The Hartree-Fock problem provides the conceptual and mathematical underpinning of a large portion of quantum chemistry. As efforts in quantum technology aim to enhance computational chemistry algorithms, the fundamental Hartree-Fock problem is a natural target. While quantum computers and quantum simulation offer many prospects for the future of modern chemistry, the Hartree-Fock problem is not a likely candidate. We highlight this fact from a number of perspectives including computational complexity, practical examples, and the full characterization of the energy landscapes for simple systems.
The localized Hartree-Fock potential has proven to be a computationally efficient alternative to the optimized effective potential, preserving the numerical accuracy of the latter and respecting the exact properties of being self-interaction free and having the correct $-1/r$ asymptotics. In this paper we extend the localized Hartree-Fock potential to fractional particle numbers and observe that it yields derivative discontinuities in the energy as required by the exact theory. The discontinuities are numerically close to those of the computationally more demanding Hartree-Fock method. Our potential enjoys a direct-energy property, whereby the energy of the system is given by the sum of the single-particle eigenvalues multiplied by the corresponding occupation numbers. The discontinuities $c_uparrow$ and $c_downarrow$ of the spin-components of the potential at integer particle numbers $N_uparrow$ and $N_downarrow$ satisfy the condition $c_uparrow N_uparrow+c_downarrow N_downarrow=0$. Thus, joining the family of effective potentials which support a derivative discontinuity, but being considerably easier to implement, the localized Hartree-Fock potential becomes a powerful tool in the broad area of applications in which the fundamental gap is an issue.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born- Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.
As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of ${rm H}_6$, ${rm H}_8$, ${rm H}_{10}$ and ${rm H}_{12}$ chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to non-interacting fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because non-interacting fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry.
A monolithic coupling between the material point method (MPM) and the finite element method (FEM) is presented. The MPM formulation described is implicit, and the exchange of information between particles and background grid is minimized. The reduced information transfer from the particles to the grid improves the stability of the method. Once the residual is assembled, the system matrix is obtained by means of automatic differentiation. In such a way, no explicit computation is required and the implementation is considerably simplified. When MPM is coupled with FEM, the MPM background grid is attached to the FEM body and the coupling is monolithic. With this strategy, no MPM particle can penetrate a FEM element, and the need for computationally expensive contact search algorithms used by existing coupling procedures is eliminated. The coupled system can be assembled with a single assembly procedure carried out element by element in a FEM fashion. Numerical results are reported to display the performances and advantages of the methods here discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا