Do you want to publish a course? Click here

Efficient frequency doubler for the soft X-ray SASE FEL at the TESLA Test Facility

201   0   0.0 ( 0 )
 Added by Mikhail Yurkov V.
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper describes an effective frequency doubler scheme for SASE free electron lasers. It consists of an undulator tuned to the first harmonic, a dispersion section, and a tapered undulator tuned to the second harmonic. The first stage is a conventional soft X-ray SASE FEL. Its gain is controlled in such a way that the maximum energy modulation of the electron beam at the exit is about equal to the local energy spread, but still far away from saturation. When the electron bunch passes through the dispersion section this energy modulation leads to effective compression of the particles. Then the bunched electron beam enters the tapered undulator and produces strong radiation in the process of coherent deceleration. We demonstrate that a frequency doubler scheme can be integrated into the SASE FEL at the TESLA Test Facility at DESY, and will allow to reach 3 nm wavelength with GW-level of output peak power. This would extend the operating range of the FEL into the so-called water window and significantly expand the capabilities of the TTF FEL user facility.



rate research

Read More

We explore the possibility of operating a SASE FEL with a Storage Ring. We use a semi-analytical model to obtain the evolution inside the undulator by taking into account the interplay on the laser dynamics due to the induced energy spread and to the radiation damping. We obtain the Renieris limit for the stationary output power and discuss the possibility of including in our model the effect of the beam instabilities.
97 - E.L. Saldin DESY 2002
We propose a concept for production of high power coherent attosecond pulses in X-ray range. An approach is based on generation of 8th harmonic of radiation in a multistage HGHG FEL (high gain high harmonic free electron laser) configuration starting from shot noise. Single-spike phenomena occurs when electron bunch is passed through the sequence of four relatively short undulators. The first stage is a conventional long wavelength (0.8 nm) SASE FEL which operates in the high-gain linear regime. The 0.1 nm wavelength range is reached by successive multiplication (0.8 nm $to$ 0.4 nm $to$ 0.2 nm $to$ 0.1 nm) in a stage sequence. Our study shows that the statistical properties of the high-harmonic radiation from the SASE FEL, operating in linear regime, can be used for selection of radiation pulses with a single spike in time domain. The duration of the spikes is in attosecond range. Selection of single-spike high-harmonic pulses is achieved by using a special trigger in data acquisition system. The potential of X-ray SASE FEL at TESLA at DESY for generating attosecond pulses is demonstrated. Since the design of XFEL laboratory at TESLA is based on the use of long SASE undulators with tunable gap, no special place nor additional FEL undulators are required for attophysics experiments. The use of a 10 GW-level attosecond X-ray pulses at X-ray SASE FEL facility will enable us to track processes inside atoms.
The mid-infrared range is an important spectrum range where materials exhibit a characteristic response corresponding to their molecular structure. A free-electron laser (FEL) is a promising candidate for a high-power light source with wavelength tunability to investigate the nonlinear response of materials. Although the self-amplification spontaneous emission (SASE) scheme is not usually adopted in the mid-infrared wavelength range, it may have advantages such as layout simplicity, the possibility of producing a single pulse, and scalability to a short-wavelength facility. To demonstrate the operation of a mid-infrared SASE FEL system in an energy recovery linac (ERL) layout, we constructed an SASE FEL setup in cERL, a test facility of the superconducting linac with the ERL configuration. Despite the adverse circumstance of space charge effects due to the given boundary condition of the facility, we successfully established the beam condition at the undulators, and observed FEL emission at a wavelength of 20 $mu$m. The results show that the layout of cERL has the potential for serving as a mid-infrared light source.
Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.
The existence of a characteristic coherence length in FEL SASE Physics determines the independent lasing of different portions, namely the slices, of the electron bunch. Each slice may be characterized by different phase space properties (not necessarily equal emittances and Twiss coefficients). This fact opens new questions on the concept of beam matching and how the various portions of the beam contribute to the performances of the output radiation, including those associated with the transverse coherence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا