Do you want to publish a course? Click here

Temperature-induced pair correlations in clusters and nuclei

50   0   0.0 ( 0 )
 Added by Stefan Frauendorf
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The pair correlations in mesoscopic systems such as $nm$-size superconducting clusters and nuclei are studied at finite temperature for the canonical ensemble of fermions in model spaces with a fixed particle number: i) a degenerate spherical shell (strong coupling limit), ii) an equidistantly spaced deformed shell (weak coupling limit). It is shown that after the destruction of the pair correlations at T=0 by a strong magnetic field or rapid rotation, heating can bring them back. This phenomenon is a consequence of the fixed number of fermions in the canonical ensemble.



rate research

Read More

The fission of highly charged sodium clusters with fissilities X>1 is studied by {em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 leq Q leq 8) undergoes multifragmentation on a time scale geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.
High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In Ref. [Michiels et al. PCCP, 2020; 22: 7828-7834] we investigated the formation of excited states in an XUV-induced nanoplasma in ammonia clusters. In the present article we expand our previous study with a detailed analysis of the nanoplasma evolution and ion kinetics. We use a time-delayed UV laser as probe to ionize excited states of H and H$_2^+$ in the XUV-induced plasma. Employing covariance mapping techniques, we show that the correlated emission of protons plays an important role in the plasma dynamics. The time-dependent kinetic energy of the ions created by the probe laser is measured, revealing the charge neutralization of the cluster happens on a sub-picosecond timescale. Furthermore, we observe ro-vibrationally excited molecular hydrogen ions H$_2^{+*}$ being ejected from the clusters. We rationalize our data through a qualitative model of a finite-size non-thermal plasma.
High intensity XUV radiation from a free-electron (FEL) was used to create a nanoplasma inside ammonia clusters with the intent of studying the resulting electron-ion interactions and their interplay with plasma evolution. In a plasma-like state, electrons with kinetic energy lower than the local collective Coulomb potential of the positive ionic core are trapped in the cluster and take part in secondary processes (e.g. electron-impact excitation/ionization and electron-ion recombination) which lead to subsequent excited and neutral molecular fragmentation. Using a time-delayed UV laser, the dynamics of the excited atomic and molecular states are probed from -0.1 ps to 18 ps. We identify three different phases of molecular fragmentation that are clearly distinguished by the effect of the probe laser on the ionic and electronic yield. We propose a simple model to rationalize our data and further identify two separate channels leading to the formation of excited hydrogen.
Photoionization studies of Na20 and Na92 clusters are carried out in a framework of linear response density functional theory. Cross sections show substantial spillover of plasmon resonances to the near-threshold ionization energies which are in reasonable agreements with measurements. The analysis of the oscillator strength, consumed by the cross section, lends further insights. The many-body interaction induced self-consistent field from density fluctuations suggests the existence of an attractive force. This may cause time-delayed plasmonic photoemissions in ultrafast measurements. At the waning end of the plasmon structure, a strong minimum in the cross sections from a correlation-driven coherence effect is predicted which can possibly be observed by the photoelectron spectroscopy.
We have calculated partial contributions of different endohedral and atomic subshells to the total dipole sum rule in the frame of the random phase approximation with exchange (RPAE) and found that they are essentially different from the numbers of electrons in respective subshells. This difference manifests the strength of the intershell interaction. We present concrete results of calculations for endohedrals, composed of fullerene C60 and all noble gases He, Ne, Ar, Kr and Xe thus forming respectively He@C60, Ne@C60, Ar@C60, Kr@C60, and Xe@C60. For comparison we obtained similar results for isolated noble gas atoms. The deviation from number of electrons in outer subshells proved to be much bigger in endohedrals than in isolated atoms thus demonstrating considerably stronger intershell correlations there.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا