Do you want to publish a course? Click here

Degradation of signals and operation failures of radio engineering satellite systems during geospace disturbances accompanied by abrupt changes in the geomagnetic field

268   0   0.0 ( 0 )
 Added by Lesyuta O. S.
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

During strong magnetic storms, the errors of determination of the range, frequency Doppler shift and angles of arrival of transionospheric radio signals exceeds the one for magnetically quiet days by one order of magnitude as a minimum. This can be the cause of performance degradation of current satellite radio engineering navigation, communication and radar systems as well as of superlong-baseline radio interferometry systems. The relative density of phase slips at mid-latitudes exceeds its mean value for magnetically quiet days at least by the order of 1 or 2, that makes a few percent of the total density of GPS observations. Furthermore, the level of phase slips for the GPS satellites located at the sunward side of the Earth was 5-10 times larger compared to the opposite side of the Earth.

rate research

Read More

Basic properties of the mid-latitude large-scale traveling ionospheric disturbances (LS TIDs) during the maximum phase of a strong magnetic storm of 6-8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics, (51.9 deg. N, 103.0 deg. E) and MORTI located at the observatory of the Institute of Ionosphere (43.2 deg. N, 77.0 deg. E). Observations of the O (557.7 nm, 630.0 nm, 360-410 nm, and 720-830 nm) emissions originating from atmospheric layers centered at altitudes of 90 km, 97 km, and 250 km were carried out at Irkutsk and of the O_2 (866.5 nm) emission originating from an atmospheric layer centered at altitude of 95 km was carried out at Almaty. Variations of the f_0F2 and virtual altitude of the F2 layer were measured at Almaty as well. An analysis of data was performed for the time interval 17.00-21.00 UT comprising a maximum of the Dst derivative. Results have shown that the storm-induced solitary large-scale wave with duration of 1 hour and with the front width of 5000 km moved equatorward with the velocity of 200 ms-1 to a distance of no less than 1000 km. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes.
In this paper an attempt is made to verify the hypothesis on the role of geomagnetic disturbances as a factor determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the based on the new GLOBDET technology method involving a global spatial averaging of disturbance spectra of the total electron content (TEC). To characterize the TID intensity quantitatively, we suggest that a new global index of the degree of disturbance should be used, which is equal to the mean value of the rms variations in TEC within the selected range of spectral periods (of 20-60 min in the present case). It was found that power spectra of daytime TEC variations in the range of 20-60 min periods under quiet conditions have a power-law form, with the slope index k = -2.5. With an increase of the level of magnetic disturbance, there is an increase in total intensity of TIDs, with a concurrent kink of the spectrum caused by an increase in oscillation intensity in the range of 20-60 min. It was found that an increase in the level of geomagnetic activity is accompanied by an increase in total intensity of TEC; however, it correlates not with the absolute level of Dst, but with the value of the time derivative of Dst (a maximum correlation coefficient reaches -0.94). The delay of the TID response of the order of 2 hours is consistent with the view that TIDs are generated in auroral regions, and propagate equatorward with the velocity of about 300-400 m/s.
In this paper we show that the simple analysis of the local geomagnetic field behaviour can serve as reliable imminent precursor for regional seismic activity increasing. As the first step the problem was investigated using one- component Dubna fluxgate magnetometer. The result of 2001-2004 Sofia monitoring confirmed many old papers for connection between Earth tide (Sun- Moon tides as earthquakes trigger) and jump (Geomagnetic quake) of daily averaged one minute standart deviation of the geomagnetic field. The second step (2004-present), which included analisys of three-component Danish fluxgate magnetometer data, worked in Skopje Seismological observatory, confirmed the first step result. The analysis of INTERMAGNET data stations around which was happened stronger earthquakes also confirmed our result. The distribution of time difference between the times of such earthquakes and local daily averaged tide vector movement for impending tide extreme confirms our estimate that the increasing seismicity is realized in time window about +/- 2.7 days. The Complex program for researching the possibility for when, where and how earthquakes prediction is proposed as well as the short description of FORTRAN codes for analysis of earthquakes, geomagnetic and tide data, their correlations and visualization.
111 - K. Brendel 2007
The time evolution of the strength of the Earths virtual axial dipole moment (VADM) is analyzed by relating it to the Fokker-Planck equation, which describes a random walk with VADM-dependent drift and diffusion coefficients. We demonstrate first that our method is able to retrieve the correct shape of the drift and diffusion coefficients from a time series generated by a test model. Analysis of the Sint-2000 data shows that the geomagnetic dipole mode has a linear growth time of 13 to 33 kyr, and that the nonlinear quenching of the growth rate follows a quadratic function of the type [1-(x/x0)^2]. On theoretical grounds, the diffusive motion of the VADM is expected to be driven by multiplicative noise, and the corresponding diffusion coefficient to scale quadratically with dipole strength. However, analysis of the Sint-2000 VADM data reveals a diffusion which depends only very weakly on the dipole strength. This may indicate that the magnetic field quenches the amplitude of the turbulent velocity in the Earths outer core.
Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا