No Arabic abstract
We demonstrate the production of high density cold atom samples (2e14 atoms/cc) in a simple optical lattice formed with YAG light that is diffracted from a holographic phase plate. A loading protocol is described that results in 10,000 atoms per lattice site. Rapid free evaporation leads to phase space densities of 1/150 within 50 msec. The resulting small, high density atomic clouds are very attractive for a number of experiments, including ultracold Rydberg atom physics.
We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.
In this article we describe the design, construction and implementation of our ion-atom hybrid system incorporating a high resolution time of flight mass spectrometer (TOFMS). Potassium atoms ($^{39}$K) in a Magneto Optical Trap (MOT) and laser cooled calcium ions ($^{40}$Ca$^+$) in a linear Paul trap are spatially overlapped and the combined trap is integrated with a TOFMS for radial extraction and detection of reaction products. We also present some experimental results showing interactions between $^{39}$K$^+$ and $^{39}$K, $^{40}$Ca$^+$ and $^{39}$K$^+$ as well as $^{40}$Ca$^+$ and $^{39}$K pairs. Finally, we discuss prospects for cooling CaH$^+$ molecular ions in the hybrid ion-atom system.
We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.
We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.