Do you want to publish a course? Click here

General Relativity Requires Absolute Space and Time

92   0   0.0 ( 0 )
 Added by Rainer Kuehne
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine two far-reaching and somewhat heretic consequences of General Relativity. (i) It requires a cosmology which includes a preferred rest frame, absolute space and time. (ii) A rotating universe and time travel are strict solutions of General Relativity.



rate research

Read More

194 - Richard Lieu 2000
Can a simple microscopic model of space and time demonstrate Special Relativity as the macroscopic (aggregate) behavior of an ensemble ? The question will be investigated in three parts. First, it is shown that the Lorentz transformation formally stems from the First Relativity Postulate (FRP) {it alone} if space-time quantization is a fundamental law of physics which must be included as part of the Postulate. An important corollary, however, is that when measuring devices which carry the basic units of lengths and time (e.g. a clock ticking every time quantum) are `moving uniformly, they appear to be measuring with larger units. Secondly, such an apparent increase in the sizes of the quanta can be attributed to extra fluctuations associated with motion, which are precisely described in terms of a thermally agitated harmonic oscillator by using a temperature parameter. This provides a stringent constraint on the microscopic properties of flat space-time: it is an array of quantized oscillators. Thirdly, since the foregoing development would suggest that the space-time array of an accelerated frame cannot be in thermal equilibrium, (i.e. it will have a distribution of temperatures), the approach is applied to the case of acceleration by the field of {it any} point object, which corresponds to a temperature `spike in the array. It is shown that the outward transport of energy by phonon conduction implies an inverse-square law of force at low speeds, and the full Schwarzschild metric at high speeds. A prediction of the new theory is that when two inertial observers move too fast relative to each other, or when fields are too strong, anharmonic corrections will modify effects like time dilation, and will lead to asymmetries which implies that the FRP may not be sustainable in this extreme limit.
The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the frame work of general relativity. We observe that oscillations do not go unnoticed with such an equation of state and that their effects persist later on in cosmic evolution. The `classical general relativity seems to retain the past history of oscillatory Universe in the form of increasing scale factor as the classical thermodynamics retains this history in the form of increasing cosmological entropy.
197 - Ying-Qiu Gu 2017
If there is a null gradient field in 1+3 dimensional space-time, we can set up a kind of light-cone coordinate system in the space-time. In such coordinate system, the metric takes a simple form, which is much helpful for simplifying and solving the Einsteins field equation. This light-cone coordinate system has wonderful properties and has been widely used in astrophysics to calculate parameters. In this paper, we give a detailed discussion for the structure of space-time with light-cone coordinate system. We derive the conditions for existence of such coordinate system, and show how to construct the light-cone coordinate system from usual ones, then explain their geometrical and physical meanings by examples.
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as the invariant light velocity in current theories, we get the corresponding special theory of relativity. Further, this Letter deduces triple special theories of relativity in cosmology, and cancels the invariant presumption of light velocity, it is proved that there exists a general constant velocity K determined by the experiments in cosmology, for K > 0, = 0 and < 0, they correspond to three kinds of possible relativistic theories in which the special theory of relativity is naturally contained for the special case of K > 0, and this Letter gives a prediction that, for K < 0, there is another likely case satisfying the principle of special relativity for some special physical systems in cosmology, in which the relativistic effects observed would be that the moving body would be lengthened, moving clock would be quickened. And the point of K = 0 is a bifurcation point, through which it gives out three types of possible universes in the cosmology (or multiverse). When a kind of matter with the maximally invariant velocity that may be superluminal or equal to light velocity is determined by experiments, then the invariant velocity can be taken as one of the general invariant velocity achieved in this Letter, then all results of current physical theories are consistent by utilizing this Letters theory.
132 - Ying-Qiu Gu 2017
The energy momentum tensor of perfect fluid is a simplified but successful model in astrophysics. In this paper, assuming the particles driven by gravity and moving along geodesics, we derived the functions of state in detail. The results show that, these functions have a little correction for the usual thermodynamics. The new functions naturally satisfy the causal condition and consist with relativity. For the self potentials of the particles we introduce an extra function $W$, which acts like negative pressure and can be used to describe dark matter. The results are helpful to understand the relation and interaction between space-time and matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا