Do you want to publish a course? Click here

Quasilinear diffusion for the chaotic motion of a particle in a set of longitudinal waves

54   0   0.0 ( 0 )
 Added by Yves Elskens
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rigorous analytical calculation of the diffusion coefficient is performed for the chaotic motion of a particle in a set of longitudinal waves with random phases and large amplitudes (~ A). A first step proves the existence of a quasilinear diffusion on a time scale ~ A^{-2/3} ln A. A second step uses this property to extend the result to asymptotic times by introducing the conditional probability distribution of position and velocity of an orbit at a given time when they are known at a previous time.



rate research

Read More

159 - R. Tsekov 2017
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction the corresponding Smoluchowski equation is obtained. Introducing the Bohm quantum potential, this Smoluchowski equation is extended to describe the Brownian motion of a quantum particle in quantum environment.
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step toward a more general understanding of chaotic scattering in higher dimensions. Despite of the strong restrictions it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern which reflects the fractal structure of the chaotic invariant set. This allows to determine structures in the cross section from the invariant set and conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra is modeled through appropriate ensemble of random matrix theory. However, a small subset of states violate this principle and display eigenstate localization, a counter-intuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modifies the spectral statistics. In this work, a $3 times 3$ random matrix model is used to obtain exact result for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as non-invariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes.
The quantum dynamics of a chaotic billiard with moving boundary is considered in this work. We found a shape parameter Hamiltonian expansion which enables us to obtain the spectrum of the deformed billiard for deformations so large as the characteristic wave length. Then, for a specified time dependent shape variation, the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the distribution of energy spreads diffusively for the first oscillations of the boundary (${< Delta^2 E}> =2 D t$). We studied the diffusion contant $D$ as a function of the boundary velocity and found differences with theoretical predictions based on random matrix theory. By extracting highly phase space localized structures from the spectrum, previous differences were reduced significantly. This fact provides the first numerical evidence of the influence of phase space localization on the quantum diffusion of a chaotic system.
109 - Jiaozi Wang , Wen-ge Wang 2017
In most realistic models for quantum chaotic systems, the Hamiltonian matrices in unperturbed bases have a sparse structure. We study correlations in eigenfunctions of such systems and derive explicit expressions for some of the correlation functions with respect to energy. The analytical results are tested in several models by numerical simulations. An application is given for a relation between transition probabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا