Do you want to publish a course? Click here

An Integrated Enterprise Accelerator Database for the SLC Control System

125   0   0.0 ( 0 )
 Added by Robert C. Sass
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since its inception in the early 1980s, the SLC control system has been driven by a highly structured memory resident real-time database. While efficient, its rigid structure and file-based sources makes it difficult to maintain and extract relevant information. The goal of transforming the sources for this database into a relational form is to enable it to be part of a Control System Enterprise Database that is an integrated central repository for SLC accelerator device and control system data with links to other associated databases.



rate research

Read More

88 - J. Chiba , H. Fujii , K. Furukawa 2001
The current status of the control system for a new high intensity proton accelerator, the JAERI-KEK Joint Project, is presented. The Phase 1 of the Joint-Project has been approved and recently started its construction at JAERI site at Tokai. The first beam commissioning is scheduled in 2006. In parallel with it, a 60-MeV Linac is now being constructed at KEK site at Tsukuba for R&D purpose. Recently the Project has officially decided to use the Experimental Physics and Industrial Control System (EPICS). Under the EPICS environment, we are challenging to implement the Ethernet/IP network for all communication, even at the level of end-point controllers which are so far connected via a field bus. In order to realize such a system, three new controllers (PLCs, WE7000 stations and general-purpose Ethernet boards) are being developed. A prototype EPICS driver for the PLCs works fine and is used to control the ion-source at the KEK Linac.
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEWs shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
87 - J. P. Edelen 2018
The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.
At the Ibaraki Neutron Medical Research Center, an accelerator-based neutron source for iBNCT (Ibaraki - Boron Neutron Capture Therapy) is being developed using an 8-MeV proton linac and a beryllium-based neutron production target. The proton linac consists of an RFQ and a DTL, which is almost the same as the front part of J-PARC linac. However, here only one high-power klystron is used as the RF source to drive the two cavities, which have quite different Q-values and responses. From June 2016, a cPCI based digital feedback system was applied to the iBNCT accelerator. It serves not only as a controller for the feedback of acceleration fields, but also as a smart operator for the auto-tuning of the two cavities in the meantime, especially during the RF startup process to the full power. The details will be described in this report.
91 - R. Ainsworth , J. Dey , J. Eldred 2021
The completion of the PIP-II project and its superconducting linear accelerator will provide up to 1.2 MW of beam power to the LBNF/DUNE facility for neutrino physics. It will also be able to produce high-power beams directly from the linac that can be used for lower-energy particle physics experiments as well, such as directing beam toward the Muon Campus at Fermilab for example. Any further significant upgrade of the beam power to DUNE, however, will be impeded by the limitations of the present Booster synchrotron at the facility. To increase the power to DUNE by a factor of two would require a new accelerator arrangement to feed the Main Injector that does not include the Booster. In what follows, a path toward upgrading the Fermilab accelerator complex to bring the beam power for DUNE to 2.4 MW is presented, using a new rapid-cycling synchrotron plus an energy upgrade to the PIP-II linac. The path includes the ability to instigate a new lower-energy, very high-power beam delivery system for experiments that can address much of the science program presented by the Booster Replacement Science Working Group. It also allows for the future possibility to go beyond 2.4 MW up to roughly 4 MW from the Main Injector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا