Do you want to publish a course? Click here

Intrabeam Scattering Analysis of ATF Beam Data Taken in April 2000

63   0   0.0 ( 0 )
 Added by Karl Bane
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

In April 2000 the single bunch energy spread, bunch length, horizontal emittance, and vertical emittance were measured as functions of current in KEKs ATF damping ring. In this report the measurement results are analyzed in light of intrabeam scattering theory. The measurements are found to be relatively consistent with theory, although the measured effects appear to be stronger than theory. In addition, the factor of 3 growth in vertical emittance at a current of 3 mA does not seem to be supported.



rate research

Read More

120 - K.L.F. Bane 2001
At the Accelerator Test Facility (ATF) at KEK intrabeam scattering (IBS) is a strong effect for an electron machine. It is an effect that couples all dimensions of the beam, and in April 2000, over a short period of time, all dimensions were measured as functions of current. In this report we derive a simple relation for the growth rates of emittances due to IBS. We apply the theories of Bjorken-Mtingwa, Piwinski, and a formula due to Raubenheimer to the ATF parameters, and find that the results all agree (if in Piwinskis formalism we replace the dispersion squared over beta by the dispersion invariant). Finally, we compare theory, including the effect of potential well bunch lengthening, with the April 2000 measurements, and find reasonably good agreement in the energy spread and horizontal emittance dependence on current. The vertical emittance measurement, however, implies that either: there is error in the measurement (equivalent to an introduction of 0.6% x-y coupling error), or the effect of intrabeam scattering is stronger than predicted (35% stronger in growth rates).
229 - K.L.F. Bane 2002
We derive a simple relation for estimating the relative emittance growth in x and y due to intrabeam scattering (IBS) in electron storage rings. We show that IBS calculations for the ATF damping ring, when using the formalism of Bjorken-Mtingwa, a modified formalism of Piwinski (where eta squared divided by beta has been replaced by the dispersion invariant), or a simple high-energy approximate formula all give results that agree well. Comparing theory, including the effect of potential well bunch lengthening, with a complete set of ATF steady-state beam size vs. current measurements we find reasonably good agreement for energy spread and horizontal emittance. The measured vertical emittance, however, is larger than theory in both offset (zero current emittance) and slope (emittance change with current). The slope error indicates measurement error and/or additional current-dependent physics at the ATF; the offset error, that the assumed Coulomb log is correct to within a factor of 1.75.
78 - R. Yang , T. Naito , S. Bai 2018
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrates the influence of the beam-gas scattering process on the transverse halo distribution.
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-Perot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed.
This paper describes an analytical theory to calculate the emittance growth rates due to intrabeam scattering in focusing systems with arbitrary x-y coupling. The presented results are based on calculations of average emittance growth rates for an initially Gaussian distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا