The time-dependent transition between a diabatic interaction potential in the entrance channel and an adiabatic potential during the fusion process is investigated within the two-center shell model. A large hindrance is obtained for the motion to smaller elongations of near symmetric dinuclear systems. The comparison of the calculated energy thresholds for the complete fusion in different relevant collective variables shows that the dinuclear system prefers to evolve in the mass asymmetry coordinate by nucleon transfer to the compound nucleus.