The three-body Coulomb scattering problem in discrete Hilbert-space basis representation


Abstract in English

For solving the $2to 2,3$ three-body Coulomb scattering problem the Faddeev-Merkuriev integral equations in discrete Hilbert-space basis representation are considered. It is shown that as far as scattering amplitudes are considered the error caused by truncating the basis can be made arbitrarily small. By this truncation also the Coulomb Greens operator is confined onto the two-body sector of the three-body configuration space and in leading order can be constructed with the help of convolution integrals of two-body Greens operators. For performing the convolution integral an integration contour is proposed that is valid for all energies, including bound-state as well as scattering energies below and above the three-body breakup threshold.

Download