Do you want to publish a course? Click here

Exchange currents in radiative hyperon decays and hyperon charge radii

96   0   0.0 ( 0 )
 Added by Georg Wagner
 Publication date 1998
  fields
and research's language is English
 Authors Georg Wagner




Ask ChatGPT about the research

Radiative decays of decuplet hyperons and octet hyperon charge radii are evaluated in a chiral constituent quark model emphasizing the role of exchange currents. Exchange currents largely cancel for the M1 decay amplitudes, while they dominate the E2 amplitude. Due to the pseudoscalar meson cloud the charge radii of Sigma^- and Xi^- are almost as large as the proton radius, in agreement with recent experimental results from SELEX. Strangeness suppression is weakened by exchange currents for several observables.



rate research

Read More

197 - Georg Wagner 1998
A short overview of motivations and successes of two-body exchange currents between constituent quarks for electromagnetic hadron observables like charge radii, magnetic and quadrupole moments is given. We then predict and analyze exchange current effects on the radiative decay widths of decuplet hyperons, which are to be measured soon. In our chiral constituent quark model, exchange currents dominate the E2 transition amplitude, while they largely cancel for the M1 transition amplitude. Strangeness suppression of the radiative hyperon decays is weakened by exchange currents. The SU(F)_3 flavor symmetry breaking for the negatively charged hyperons is strong.
395 - Georg Wagner 1998
Octet hyperon charge radii are calculated in a chiral constituent quark model including electromagnetic exchange currents between quarks. In impulse approximation one observes a decrease of the hyperon charge radii with increasing strangeness. This effect is reduced by exchange currents. Due to exchange currents, the charge radius of the negatively charged hyperons are close to the proton charge radius.
190 - F. Becattini 2019
We calculate the contribution to the polarization of $Lambda$ hyperons in relativistic nuclear collisions at high energy from the decays of $Sigma^*(1385)$ and $Sigma^0$, which are the predominant sources of $Lambda$ production besides the primary component, as a function of the $Lambda$ momentum. Particularly, we estimate the longitudinal component of the mean spin vector as a function of the azimuthal angle in the transverse plane, assuming that primary $Sigma^*$ and $Sigma^0$ polarization follow the predictions of local thermodynamic equilibrium in a relativistic fluid. Provided that the rapidity dependence around midrapidity of polarization is negligible, we find that this component of the overall spin vector has a very similar pattern to the primary one. Therefore, we conclude that the secondary decays cannot account for the discrepancy in sign between experimental data and hydrodynamic model predictions of the longitudinal polarization of $Lambda$ hyperons recently measured by the STAR experiment at RHIC.
143 - H. Nemura , N. Ishii , S. Aoki 2009
We calculate potentials between a proton and a $Xi^0$ (hyperon with strangeness -2) through the equal-time Bethe-Salpeter wave function, employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm)^4 lattice at the lattice spacing $a simeq 0.14$ fm. The ud quark mass in our study corresponds to $m_{pi}simeq 0.37$ and 0.51 GeV, while the s quark mass corresponds to the physical value of $m_K$. The central $p Xi^0$ potential has a strong (weak) repulsive core in the $^1S_0$ ($^3S_1$) channel for $r lsim 0.6$ fm, while the potential has attractive well at the medium and long distances (0.6 fm $lsim r lsim 1.2$ fm) in both channels. The sign of the $p Xi^0$ scattering length and its quark mass dependence indicate a net attraction in both channels at low energies.
Electromagnetic form factors of hyperons ($Lambda$, $Sigma$, $Xi$) in the timelike region, accessible in the reaction $e^+e^- to bar YY$, are studied. The focus is on energies close to the reaction thresholds, where the properties of these form factors are significantly influenced by the interaction in the final $bar YY$ system. This interaction is taken into account in the calculation, utilizing $bar YY$ potential models that have been constructed by the Julich group for the analysis of data from the reaction $bar pp to bar YY$ in the past. The enhancement of the effective form factor for energies close to the threshold, seen in experiments of $e^+e^- to bar Lambda Lambda$ and $e^+e^- to bar Sigma^0Lambda$, is reproduced. With regard to the reactions $e^+e^- to bar Sigma^- Sigma^+, barSigma^0Sigma^0, barSigma^+Sigma^-$ a delicate interplay between the three channels is observed in the results at low energies, caused by the $barSigmaSigma$ interaction. Predictions for the electromagnetic form factors $G_M$ and $G_E$ in the timelike region are presented for the $Lambda$, $Sigma$, and $Xi$ hyperons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا