Do you want to publish a course? Click here

The current status of Vud

136   0   0.0 ( 0 )
 Added by Ian Towner
 Publication date 1998
  fields
and research's language is English
 Authors I. S. Towner




Ask ChatGPT about the research

The value of the $V_{ud}$ matrix element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix can be derived from nuclear superallowed beta decays, neutron decay, and pion beta decay. We survey current world data for all three. Today, the most precise value of $V_{ud}$ comes from the nuclear decays; however, the precision is limited not by experimental error but by the estimated uncertainty in theoretical corrections. The neutron data are approximately a factor of four poorer in precision but this could change dramatically in the near future as planned experiments come to fruition. The nuclear result (and the most recent of the neutron decay results) differ at the 98% confidence level from the unitarity condition for the CKM matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.



rate research

Read More

98 - J.C. Hardy , I.S. Towner 2015
The Vud element of the Cabibbo-Kobayashi-Maskawa matrix can be determined from several different experimental approaches: either 0+-to-0+ superallowed nuclear beta decays, neutron decay, nuclear mirror decays, or pion beta decay. Currently all give consistent results but, because the nuclear superallowed value has an uncertainty at least a factor of seven less than all other results, it dominates the result. A new survey of world superallowed-decay data establishes the Ft values of 14 separate superallowed transitions to a precision of order 0.1% or better; and all 14 are statistically consistent with one another. This very robust data set yields the result Vud = 0.97417(21), the value we recommend.
151 - H. Petersen 2017
The goal of heavy ion reactions at low beam energies is to explore the QCD phase diagram at high net baryon chemical potential. To relate experimental observations with a first order phase transition or a critical endpoint, dynamical approaches for the theoretical description have to be developed. In this summary of the corresponding plenary talk, the status of the dynamical modeling including the most recent advances is presented. The remaining challenges are highlighted and promising experimental measurements are pointed out.
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.
A formalism based on a relativistic plane wave impulse approximation is developed to investigate the strange-quark content ($g_{A}^{s}$) of the axial-vector form factor of the nucleon via neutrino-nucleus scattering. Nuclear structure effects are incorporated via an accurately calibrated relativistic mean-field model. The ratio of neutral- to charged-current cross sections is used to examine the sensitivity of this observable to $g_{A}^{s}$. For values of the incident neutrino energy in the range proposed by the FINeSSE collaboration and by adopting a value of $g_{A}^{s}=-0.19$, a 30% enhancement in the ratio is observed relative to the $g_{A}^{s}=0$ result.
We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MINER$ u$A and MiniBooNE charged-current quasielastic scattering data, underpredicts the inclusive T2K cross sections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا