No Arabic abstract
The squeeze-out phenomenon of $K^+$ and $K^-$ mesons, i.e. the azimuthal asymmetry of $K^+$ and $K^-$ mesons emitted at midrapidity in heavy ion reactions, is investigated for beam energies of 1-2 A.GeV. It is found that the squeeze-out signal is strongly affected by in-medium potentials of these mesons. The repulsive $K^+$-nucleus potential gives rise to a pronounced out-of-plane emission of $K^+$s at midrapidity. With the $K^+$ potential we reproduce well the experimental data of the $K^+$ azimuthal distribution. It is found that the attractive $K^-$-nucleus potential cancels to a large extent the influence of rescattering and reabsorption of the $K^-$ mesons on the projectile and target residuals (i.e. shadowing). This results in an azimuthally isotropic emission of the midrapidity $K^-$ mesons with transverse momentum up to 0.8 GeV/c. Since it is well accepted that the shadowing alone would lead to a significant out-of-plane preference of particle emission, in particular at high transverse momenta, the disappearance of the out-of-plane preference for the $K^-$ mesons can serve as an unambiguous signal of the attractive $K^-$ potential. We also apply a covariant formalism of the kaon dynamics to the squeeze-out phenomenon. Discrepancies between the theory and the experiments and possible solutions are discussed.
We discuss the relevance of chaotic scattering in heavy--ion reactions at energies around the Coulomb barrier. A model in two and three dimensions which takes into account rotational degrees of freedom is discussed both classically and quantum-mechanically. The typical chaotic features found in this description of heavy-ion collisions are connected with the anomalous behaviour of several experimental data.
We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.
Relative hadron abundances from high-energy heavy-ion collisions reveal substantial inhomogeneities of temperature and baryon-chemical potential within the decoupling volume. The freeze-out volume is not perfectly stirred, i.e. the concentrations of pions, kaons, (anti-) nucleons etc are inhomogeneous. Such inhomogeneities in the late stages of the hydrodynamic expansion might be traces of a first-order phase transition.
The probability of the formation and decay of a dinuclear system is investigated for a wide range of relative orbital angular momentum values. The mass and angular distributions of the quasifission fragments are studied to understand the reaction mechanisms of the heavy ion collision of $^{78}$Kr(10$A$ MeV) + $^{40}$Ca within dinuclear system model. The quasifission products are found to contribute to the mass-symmetric region of the mass distribution in collisions with a large orbital angular momentum. The analysis of mass and angular distributions of quasifission fragments shows the possibility of the $180^circ$ rotation of the system so that projectile-like products can be observed in the forward hemisphere with large cross sections, which can explain the phenomenon observed recently in the ISODEC experiment.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potential such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.