No Arabic abstract
The existence of a nuclear electric octupole moment (EOM) requires both parity and time invariance violation. The EOMs of odd $Z$ nuclei that are induced by a particular T- and P-odd interaction are calculated. We compare such octupole moments with the collective EOMs that can occur in nuclei having a static octupole deformation. A nuclear EOM can induce a parity and time invariance violating atomic electric dipole moment, and the magnitude of this effect is calculated. The contribution of a nuclear EOM to such a dipole moment is found, in most cases, to be smaller than that of other mechanisms of atomic electric dipole moment production.
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.
We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which however are suppressed by 1/$N_c$ compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral EFT potential in the TV parity-violating case, leads to large-$N_c$ scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.
We consider a mechanism by which dyons (electrically charged magnetic monopoles) can produce both a T- and P-odd (i.e. time reversal invariance and parity violating) mixed polarizability beta [defined by Delta E = -beta E.B, where Delta E is the energy change when electric (E) and magnetic (B) fields are applied to a system] and a T- and P-odd interaction between two particles: psi_1-bar gamma_5 psi_1 psi_2-bar psi_2, where the psi_i are electron and quark spinors. The latter can create atomic and neutron electric dipole moments (EDMs). From experimental bounds on these we find limits on the properties of dyons. Our best limit, using the experimental limit for the EDM of the Tl atom, is M |Q g (Q^2 - g^2)|^(-1/4) > 6 GeV, where M is the dyon mass and Q is the electric and g the magnetic charge of the dyons. The contribution of dyons to CP violation in K-meson decays is also estimated.
The direct transition-matrix approach to determination of the electric polarizabilities of quantum bound systems developed in my recent work is applied to study the electric multipole polarizabilities of a two-particle bound complex with a central interaction between the particles. Expressions for the electric quadrupole and octupole polarizabilities of the deuteron are derived and their values in the case of the S-wave separable interaction potential are calculated.