The role of the meson-exchange current correction to the nuclear charge operator is studied in electron scattering processes involving the excitation of medium and heavy nuclei to energies up to the quasi-elastic peak. The effect of these contributions in the quasi-free electron scattering process is a reduction of at most a 3% in the longitudinal response at the energy of the peak, a value which is below the experimental error and must not be taken into account in calculations in this energy region. On the other hand, the excitation of low-lying nuclear levels of neutronic character shows, with respect to the protonic ones, a considerable effect due to the inclusion of the two-body term in the charge operator. More realistic calculations, such as those performed in the random-phase approximation framework, give rise to a mixing of one particle-one hole configurations of both kinds which reduce these effects. However, it has been found that the excitation of some of these levels is sizeably affected by the meson-exchange contribution. More precise experimental data concerning some of these states, such as e.g. the high-spin states in 208Pb, could throw some light in the problem of a more feasible determination of these effects and, as a consequence, could provide an alternative procedure to obtain the charge neutron form factor.