Constituent quark model for nuclear stopping in high energy nuclear collisions


Abstract in English

We study the nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on $^{32}mbox{S} + ^{32}mbox{S}$ at $E_{lab} = 200$ AGeV and $^{208}mbox{Pb} + ^{208}mbox{Pb}$ at $E_{lab} = 160$ AGeV. Theoretical predictions are also given for proton rapidity distribution in $^{197}mbox{Au} + ^{197}mbox{Au}$ at $sqrt{s} = 200$ AGeV (BNL-RHIC). We predict that the nearly baryon free region will appear in the midrapidity region and the rapidity shift is $langle Delta y rangle = 2.22$.

Download