Do you want to publish a course? Click here

Constituent quark model for nuclear stopping in high energy nuclear collisions

188   0   0.0 ( 0 )
 Added by Taekeun Choi
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

We study the nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on $^{32}mbox{S} + ^{32}mbox{S}$ at $E_{lab} = 200$ AGeV and $^{208}mbox{Pb} + ^{208}mbox{Pb}$ at $E_{lab} = 160$ AGeV. Theoretical predictions are also given for proton rapidity distribution in $^{197}mbox{Au} + ^{197}mbox{Au}$ at $sqrt{s} = 200$ AGeV (BNL-RHIC). We predict that the nearly baryon free region will appear in the midrapidity region and the rapidity shift is $langle Delta y rangle = 2.22$.



rate research

Read More

446 - X.Zhu , N.Xu , P.Zhuang 2007
In high-energy collisions, massive heavy quarks are produced back-to-back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. As a result, the angular correlation function for D$bar{rm D}$ pairs is suppressed at the angle $Deltaphi=pi$. While the hot and dense medium in collisions at RHIC ($sqrt{s_{NN}}=200$ GeV) can only smear the initial back-to-back D$bar {rm D}$ correlation, a clear and strong near side D$bar{rm D}$ correlation is expected at LHC ($sqrt{s_{NN}}=5500$ GeV).
We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang-Mills analoga of Faradays Law and Gauss Law predict the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems $A+B$. The rapidity-odd transverse flow translates into a directed particle flow $v_1$ which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang-Mill dynamics in high energy collisions.
103 - Yogiro Hama , Takeshi Kodama , 2020
In this paper, we give an account of the peripheral-tube model, which has been developed to give an intuitive and dynamical description of the so-called ridge effect in two-particle correlations in high-energy nuclear collisions. Starting from a realistic event-by-event fluctuating hydrodynamical model calculation, we first show the emergence of ridge + shoulders in the so-called two-particle long-range correlations, reproducing the data. In contrast to the commonly used geometric picture of the origin of the anisotropic flow, we can explain such a structure dynamically in terms of the presence of high energy-density peripheral tubes in the initial conditions. These tubes violently explode and deflect the near radial flow coming from the interior of the hot matter, which in turn produces a two-ridge structure in single-particle distribution, with approximately two units opening in azimuth. When computing the two-particle correlation, this will result in characteristic three-ridge structure, with a high near-side ridge and two symmetric lower away-side ridges or shoulders. Several anisotropic flows, necessary to producing ridge + shoulder structure, appear naturally in this dynamical description. Using this simple idea, we can understand several related phenomena, such as centrality dependence and trigger-angle dependence.
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $sigma$, $omega$, and $rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $beta$ equilibrium.
This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the Glauber Model in relativistic heavy ion physics. This model is used to calculate geometric quantities, which are typically expressed as impact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the optical limit and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا