Charge independence and symmetry are approximate symmetries of nature. The observations of the small symmetry breaking effects and the consequences of those effects are reviewed. The effects of the mass difference between up and down quarks and the off shell dependence $q^2$ of $rho^0$-$omega$ mixing are stressed. In particular, I argue that models which predict a strong $q^2$ dependence of $rho^0$-$omega$ mixing seem also to predict a strong $q^2$ variation for the $rho^0$-$gamma^*$ matrix element, in contradiction with experiment.
We review the main achievements of the research programme for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.
Recent experimental results for neutron-neutron scattering length are reanalyzed from the point of view of three-nucleon force contribution. We found that the limiting value of $a_{nn}=- 15.8pm 0.5$~fm must be free of any implicit three-body force contribution. We have also shown that the difference between the above experimental value of $a_{nn}$ and the well established value of neutron-proton scattering length $a_{np}$ can be explained by differences in the one-pion exchange potentials.
The interpretation of experiments that search for neutrinoless double beta decay relies on input from nuclear theory. Cirigliano et al. recently showed that, for the light Majorana exchange formalism, effective field theory calculations require a $nnto pp e^- e^-$ contact term at leading order. They estimated the size of this contribution by relating it to measured charge-independence-breaking (CIB) nucleon-nucleon interactions and making an assumption about the relative sizes of CIB operators. We show that the assumptions underlying this approximation are justified in the limit of the number of colors $N_c$ being large. We also obtain a large-$N_c$ hierarchy among CIB nucleon-nucleon interactions that is in agreement with phenomenological results.
We formulate the quark meson coupling model as a many-body effective Hamiltonian. This leads naturally to the appearance of many-body forces. We investigate the zero range limit of the model and compare its Hartree-Fock Hamiltonian to that corresponding to the Skyrme effective force. By fixing the three parameters of the model to reproduce the binding and symmetry energy of nuclear matter, we find that it allows a very satisfactory interpretation of the Skyrme force.
The directed flow of identified hadrons is studied within the parton-hadron-string-dynamics (PHSD) approach for the asymmetric system Cu+Au in non-central collisions at $sqrt{s_{NN}}$ = 200 GeV. It is emphasized that due to the difference in the number of protons of the colliding nuclei an electric field emerges which is directed from the heavy to the light nucleus. This strong electric field is only present for about 0.25 fm/c at $sqrt{s_{NN}}$ = 200 GeV and leads to a splitting of the directed flow $v_1$ for particles with the same mass but opposite electric charges in case of an early presence of charged quarks and antiquarks. The microscopic calculations of the directed flow for $pi^pm, K^pm, p$ and $bar{p}$ are carried out in the PHSD by taking into account the electromagnetic field induced by the spectators as well as its influence on the hadronic and partonic quasiparticle trajectories. It is shown that the splitting of the directed flow as a function of pseudorapidity $eta$ and in particular as a function of the transverse momentum $p_t$ provides a direct access to the electromagnetic response of the very early (nonequilibrium) phase of relativistic heavy-ion collisions and allows to shed light on the presence (and number) of electric charges in this phase.