Do you want to publish a course? Click here

Chaotic Behavior in Warm Deformed Nuclei Induced by Residual Two-Body Interactions

56   0   0.0 ( 0 )
 Added by ul
 Publication date 1992
  fields
and research's language is English




Ask ChatGPT about the research

Band mixing calculations in rapidly rotating well-deformed nuclei are presented, investigating the properties of energy levels and rotational transitions as a function of excitation energy. Substantial fragmentation of E2 transitions is found for $E_x gsim$ 800 keV above yrast, which represents the onset of rotational damping. Above $E_x approx $ 2 MeV, energy levels and E2 strengths display fluctuations typical of quantum chaotic systems, which are determined by the high multipole components of the two-body residual interaction.



rate research

Read More

189 - M. Valverde 2009
We make a review of the main nuclear effects that affect neutrino-nucleus cross sections. We discuss how the different models in the literature try to describe these different effects, and thus try to compare between them. We focus on the quasi-elastic reaction in the neutrino energy region of around 1 GeV, where recent data from MiniBoone are available. Among the issues discussed are the different treatment of medium corrections to initial and nal state nucleon wave functions and the problem of the rescattering of ejected nucleons.
158 - Bastian Erler , Robert Roth 2014
Background: Collective excitations of nuclei and their theoretical descriptions provide an insight into the structure of nuclei. Replacing traditional phenomenological interactions with unitarily transformed realistic nucleon-nucleon interactions increases the predictive power of the theoretical calculations for exotic or deformed nuclei. Purpose: Extend the application of realistic interactions to deformed nuclei and compare the performance of different interactions, including phenomenological interactions, for collective excitations in the sd-shell. Method: Ground-state energies and charge radii of 20-Ne, 28-Si and 32-S are calculated with the Hartree-Fock method. Transition strengths and transition densities are obtained in the Random Phase Approximation with explicit angular-momentum projection. Results: Strength distributions for monopole, dipole and quadrupole excitations are analyzed and compared to experimental data. Transition densities give insight into the structure of collective excitations in deformed nuclei. Conclusions: Unitarily transformed realistic interactions are able to describe the collective response in deformed sd-shell nuclei in good agreement with experimental data and as good or better than purely phenomenological interactions. Explicit angular momentum projection can have a significant impact on the response.
The retardation and temperature effects in two-body collisions are studied. The collision integral with retardation effects is obtained on the base of the Kadanoff- Baym equations for Green functions in a form with allowance for reaching the local equilibrium system. The collisional relaxation times of collective vibrations are calculated using both the transport approach and doorway state mechanism with hierarchy of particle-hole configurations in heated nuclei. The relaxation times of the kinetic method are rather slowly dependent on multipolarity of the Fermi surface distortion and mode of the collective motion. The dependence of the relaxation times on temperature as well as on frequency of collective vibrations is considered and compared. It is shown that variations of the in-medium two-body cross-sections with energy lead to non-quadratic dependence of the collisional relaxation time both on temperature and on collective motion frequency.
The similarity renormalization group is used to transform a general Dirac Hamiltonian into diagonal form. The diagonal Dirac operator consists of the nonrelativistic term, the spin-orbit term, the dynamical term, and the relativistic modification of kinetic energy, which are very useful to explore the symmetries hidden in the Dirac Hamiltonian for any deformed system. As an example, the relativistic symmetries in an axially deformed nucleus are investigated by comparing the contributions of every term to the single particle energies and their correlations with the deformation. The result shows that the deformation considerably influences the spin-orbit interaction and dynamical effect, which play a critical role in the relativistic symmetries and its breaking.
79 - X.G. Cao , G.Q. Zhang , X.Z. Cai 2010
The reaction dynamics of axisymmetric deformed $^{24}$Mg + $^{24}$Mg collisions have been investigated systematically by an isospin-dependent quantum molecular dynamics (IDQMD) model. It is found that different deformations and orientations result in apparently different properties of reaction dynamics. We revealed that some observables such as nuclear stopping power ($R$), multiplicity of fragments, and elliptic flow are very sensitive to the initial deformations and orientations. There exists an eccentricity scaling of elliptic flow in central body-body collisions with different deformations. In addition, the tip-tip and body-body configurations turn out to be two extreme cases in central reaction dynamical process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا