Do you want to publish a course? Click here

Relativistic Nuclear Matter with Self-Consistent Correlation Energy

59   0   0.0 ( 0 )
 Added by Mcneil James A.
 Publication date 1992
  fields
and research's language is English




Ask ChatGPT about the research

We study relativistic nuclear matter in the $sigma - omega$ model including the ring-sum correlation energy. The model parameters are adjusted self-consistently to give the canonical saturation density and binding energy per nucleon with the ring energy included. Two models are considered, mean-field-theory where we neglect vacuum effects, and the relativistic Hartree approximation where such effects are included but in an approximate way. In both cases we find self-consistent solutions and present equations of state. In the mean-field case the ring energy completely dominates the attractive part of the energy density and the elegant saturation mechanism of the standard approach is lost, namely relativistic quenching of the scalar attraction. In the relativistic Hartree approach the vacuum effects are included in an approximate manner using vertex form factors with a cutoff of 1 - 2 GeV, the range expected from QCD. Due to the cutoff, the ring energy for this case is significantlysmaller, and we obtain self-consistent solutions which preserve the basic saturation mechanism of the standard relativistic approach.



rate research

Read More

With the relativistic representation of the nuclear tensor force that is included automatically by the Fock diagrams, we explored the self-consistent tensor effects on the properties of nuclear matter system. The analysis were performed within the density-dependent relativistic Hartree-Fock (DDRHF) theory. The tensor force is found to notably influence the saturation mechanism, the equation of state and the symmetry energy of nuclear matter, as well as the neutron star properties. Without introducing any additional free parameters, the DDRHF approach paves a natural way to reveal the tensor effects on the nuclear matter system.
We present calculations for symmetric nuclear matter using chiral nuclear interactions within the Self-Consistent Greens Functions approach in the ladder approximation. Three-body forces are included via effective one-body and two-body interactions, computed from an uncorrelated average over a third particle. We discuss the effect of the three-body forces on the total energy, computed with an extended Galitskii-Migdal-Koltun sum-rule, as well as on single-particle properties. Saturation properties are substantially improved when three-body forces are included, but there is still some underlying dependence on the SRG evolution scale.
49 - J. Dobaczewski 1998
We present a very brief description of the Hartree-Fock method in nuclear structure physics, discuss the numerical methods used to solve the self-consistent equations, and analyze the precision and convergence properties of solutions. As an application we present results pertaining to quadrupole moments and single-particle quadrupole polarizations in superdeformed nuclei with A~60.
Recently we showed that while the tensor force plays an important role in nuclear matter saturation in non-relativistic studies, it does not do so in relativistic studies. The reason behind this is the role of $M^*$, the sum of nucleon mass and its attractive self-energy in nuclear matter. Yet nonrelativistic calculations at a certain level of approximation are far less difficult than comparative relativistic calculation. Naturally the question arises if one can modify a nonrelativistic method, say, the lowest order Brueckner theory (LOBT), to reproduce approximately the results of a relativistic calculation. While a many body effect, the role of $M^*$ is intrinsically relativistic. It cannot be simulated by adding multi-body forces in a nonrelativistic calculation. Instead, we examine if adding a set of recipes to LOBT can be useful for the purpose. We point out that the differences in the results arise principally from two reasons - first, the role of $M^*$ and second, the disappearance in a relativistic treatment of the gap in the hole and particle energy spectra, present in LOBT. In this paper we show that LOBT, modified by {it recipes} to remove these two reasons, generates results quite close to those of Dirac-Brueckner theory.
121 - F. Raimondi , C. Barbieri 2018
Microscopic calculations of the electromagnetic response of medium-mass nuclei are now feasible thanks to the availability of realistic nuclear interactions with accurate saturation and spectroscopic properties, and the development of large-scale computing methods for many-body physics. The purpose is to compute isovector dipole electromagnetic (E1) response and related quantities, i.e. integrated dipole cross section and polarizability, and compare with data from photoabsorption and Coulomb excitation experiments. The single-particle propagator is obtained by solving the Dyson equation, where the self-energy includes correlations non-perturbatively through the Algebraic Diagrammatic Construction (ADC) method. The particle-hole ($ph$) polarization propagator is treated in the Dressed Random Phase Approximation (DRPA), based on an effective correlated propagator that includes some $2p2h$ effects but keeps the same computation scaling as the standard Hartree-Fock propagator. The E1 responses for $^{14,16,22,24}$O, $^{36,40,48,52,54,70}$Ca and $^{68}$Ni have been computed: the presence of a soft dipole mode of excitation for neutron-rich nuclei is found, and there is a fair reproduction of the low-energy part of the experimental excitation spectrum. This is reflected in a good agreement with the empirical dipole polarizability values. For a realistic interaction with an accurate reproduction of masses and radii up to medium-mass nuclei, the Self-Consistent Greens Function method provides a good description of the E1 response, especially in the part of the excitation spectrum below the Giant Dipole Resonance. The dipole polarizability is largely independent from the strategy of mapping the dressed propagator to a simplified one that is computationally manageable
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا