Do you want to publish a course? Click here

Isospin symmetry breaking in an algebraic pairing Sp(4) model

58   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

An exactly solvable sp(4) algebraic approach extends beyond the traditional isospin conserving nuclear interaction to bring forward effects of isospin symmetry breaking and isospin mixing resulting from a two-body nuclear interaction that includes proton-neutron (pn) and like-particle isovector pairing correlations plus significant isoscalar pn interactions. The model yields an estimate for the extent to which isobaric analog 0+ states in light and medium mass nuclei may mix with one another and reveals possible, but still extremely weak, non-analog beta-decay transitions.



rate research

Read More

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the $T=frac12$ doublets and $T=1$ triplets, and TDEs for the $T=1$ triplets. Relative strengths of the obtained isospin-symmetry-breaking terms {em are not} consistent with the differences in the $NN$ scattering lengths, $a_{nn}$, $a_{pp}$, and $a_{np}$. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.
In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have been re-examined. The Fermi matrix element is evaluated with realistic spherical single-particle wave functions, obtained from spherical Woods-Saxon (WS) or Hartree-Fock (HF) potentials, fine-tuned to reproduce the experimental data on charge radii and separation energies for nuclei of interest. The elaborated adjustment procedure removes any sensitivity of the correction to a specific parametrisation of the WS potential or to vario
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismatch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
The recent experimental observation of isospin symmetry breaking (ISB) in the ground states of the $T=3/2$ mirror pair $^{73}$Sr - $^{73}$Br is theoretically studied using large-scale shell model calculations. The large valence space and the successful PFSDG-U effective interaction used for the nuclear part of the problem capture possible structural changes and provide a robust basis to treat the ISB effects of both electromagnetic and non-electromagnetic origin. The calculated shifts and mirror-energy-differences are consistent with the inversion of the $I^{pi}$= 1/2$^{-}, 5/2^{-}$ states between $^{73}$Sr - $^{73}$Br, and suggest that the role played by the Coulomb interaction is dominant. An isospin breaking contribution of nuclear origin is estimated to be $approx 25$ keV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا