Do you want to publish a course? Click here

Nuclear surface studies with antiprotonic atom X-rays

50   0   0.0 ( 0 )
 Added by Agnieszka Trzcinska
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The recent and older level shifts and widths in pbar atoms are analyzed. The results are fitted by an antiproton-nucleus optical potential with two basic complex strength parameters. These parameters are related to average S and P wave scattering parameters in the subthreshold energy region. A fair consistency of the X-ray data for all Z values, stopping pbar data and the Nbar-N scattering data has been achieved. The determination of neutron density profiles at the nuclear surface is undertaken, and the determination of the neutron R_{rms} radii is attempted. Uncertainties due to the input data and the procedure are discussed.

rate research

Read More

43 - R. Schmidt 2002
The x-ray cascade from antiprotonic atoms was studied for 106Cd, 116Cd, 112Sn, 116Sn, 120Sn, and 124Sn. Widths and shifts of the levels due to strong interaction were deduced. Isotopic effects in the Cd and Sn isotopes are clearly seen. The results are used to investigate the nucleon density in the nuclear periphery. The deduced neutron distributions are compared with the results of the previously introduced radiochemical method and with HFB calculations.
The elastic scattering, Stark transitions and Coulomb deexcitation of excited antiprotonic hydrogen atom in collisions with hydrogenic atom have been studied in the framework of the fully quantum-mechanical close-coupling method for the first time. The total cross sections $sigma_{nl to nl}(E)$ and averaged on the initial angular momentum $l$ cross sections $sigma_{nto n}(E)$ have been calculated for the initial states of $(bar{p}p)_{n}$ atoms with the principal quantum number $n=3 - 14 $ and at the relative energies $E=0.05 - 50$ eV. The energy shifts of the $ns$ states due to the strong interaction and relativistic effects are taken into account. Some of our results are compared with the semiclassical calculations.
We report on an updated Paris nucleon-antinucleon optical potential. The long- and intermediate-range real parts are obtained by G-parity transformation of the Paris nucleon-nucleon potential based on a theoretical dispersion-relation treatment of the correlated and uncorrelated two-pion exchange. The short-range imaginary potential parametrization results from the calculation of the nucleon-antinucleon annihilation box diagram into two mesons with a nucleon-antinucleon intermediate state in the crossed channel. The parametrized real and imaginary short range parts are determined by fitting not only the existing experimental data included in the 1999 version of the Paris nucleon-antinucleon potential, but also the recent antiprotonic-hydrogen data and antineutron-proton total cross sections. The description of these new observables is improved. Only this readjusted potential generates an isospin zero 1S0, 52 MeV broad quasibound state at 4.8 MeV below the threshold. Recent BES data on J/psi decays could support the existence of such a state.
While Josephson-like junctions, transiently established in heavy ion collisions ($tau_{coll}approx10^{-21}$ s) between superfluid nuclei --through which Cooper pair tunneling ($Q$-value $Q_{2n}$) proceeds mainly in terms of successive transfer of entangled nucleons-- is deprived from the macroscopic aspects of a supercurrent, it displays many of the special effects associated with spontaneous symmetry breaking in gauge space (BCS condensation), which can be studied in terms of individual quantum states and of tunneling of single Cooper pairs. From the results of studies of one- and two- neutron transfer reactions carried out at energies below the Coulomb barrier we estimate the value of the mean square radius (correlation length) of the nuclear Cooper pair. A quantity related to the largest distance of closest approach for which the absolute two-nucleon tunneling cross section is of the order of the single-particle one. Furthermore, emission of $gamma$-rays of (Josephson) frequency $ u_J=Q_{2n}/h$ distributed over an energy range $hbar/tau_{coll}$ is predicted.
326 - Lorenzo Fortunato 2019
A method has been recently proposed to establish the geometry of the alpha-cluster arrangement in $^{12}$C making use of polarized gamma-rays. The ratio of intensities of scattered radiation at 90 degrees along and perpendicular to the initial direction of the electric field vector, called depolarization ratio, is a key quantity that allows to underpin the nature of totally symmetric modes of vibrations. This allows to connect with the underlying point-group structure and therefore to the geometric shape of the nuclear molecule. This method is reviewed for $^{12}$C and extended to other configurations, such as three unequal clusters and four identical clusters (e.g. $^{16}$O).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا