On the resonance spectra of particle-unstable light nuclei with a Sturmian approach that preserves the Pauli principle


Abstract in English

The fundamental ingredients of the MCAS (multi-channel algebraic scattering) method are discussed. The main feature, namely the application of the sturmian theory for nucleon-nucleus scattering, allows solution of the scattering problem given the phenomenological ingredients necessary for the description of weakly-bound (or particle-unstable) light nuclear systems. Currently, to describe these systems, we use a macroscopic, collective model. Analyses show that the couplings to low-energy collective-core excitations are fundamental but they are physically meaningful only if the constraints introduced by the Pauli principle are taken into account. For this we introduce in the nucleon-nucleus system the Orthogonalizing Pseudo-Potential formalism, extended to collective excitations of the core. The formalism leads one to discuss a new concept, Pauli hindrance, which appears to be important especially to understand the structure of weakly-bound and unbound systems.

Download