Relativistic constituent quark models generally describe three-quark systems with particular interactions. The corresponding invariant mass eigenvalue spectra and pertinent eigenstates should exhibit the multiplet structure anticipated for baryon resonances. Taking into account the flavour content, spin structure, and spatial distribution of the baryon wave functions together with mass relations of the eigenvalues and decay properties of the eigenstates, we can link the theoretical mass eigenstates with the experimentally measured resonances. The resulting classification of baryon resonances differs in some respects from the one suggested by the Particle Data Group. With regard to the hadronic decay widths of light and strange baryon resonances a consistent picture emerges only, if the classification includes two-star resonances.