Based on A Multi-Phase Transport model, the elliptic flow $v_{2}$ of $phi$ mesons which is reconstructed from $K^{+}K^{-}$ at the Relativistic Heavy Ion Collider (RHIC) energy has been studied. The results show that reconstructed $v_{2}$ of $phi$ meson can keep the earlier information before $phi$ decays and it seems to obey the number of constituent quark scaling as other mesons and baryons. This result indicates that the $phi$ $v_2$ mostly reflects the parton level collectivity developed during the early stage of the collisions and the strange and light up/down quarks have similar collectivity properties before the hadronization.
We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K_T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R_out/R_side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on $K_T$, are not unusually large and are strongly affected by momentum resolution effects.
The production of phi mesons in Au+Au collisions at RHIC and their propagation in a hot and dense nuclear medium is studied within the microscopic quark-gluon string model. The inverse slope parameter of the transverse mass distribution agrees well with that extracted from the STAR data, while the absolute yield of phi is underestimated by a factor 2. It appears that the fusion of strings alone cannot increase the phi yield either. Less than 30% of detectable phis experience elastic scattering, this rate is insufficient for the full thermalization of phi. The directed flow of phi at |y|<2 demonstrates strong antiflow behavior, whereas its elliptic flow rises up to about 3.5% in the same rapidity interval. As a function of transverse momentum it rises linearly with increasing p_t, in agreement with the STAR data, and saturates at p_t > 2 GeV/c.
We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.
We present a system size and energy dependence of $phi$ meson production in Cu+Cu and Au+Au collisions at $sqrt{s_{NN}}$=62.4 GeV and 200 GeV measured by the STAR experiment at RHIC. We find that the number of participant scaled $phi$ meson yields in heavy ion collisions over that of p+p collisions are larger than 1 and increase with collision energy. We compare the results with those of open-strange particles and discuss the physics implication.
We present results for the measurement of $phi$ meson production via its charged kaon decay channel $phi to K^+K^-$ in Au+Au collisions at $sqrt{s_{_{NN}}}=62.4$, 130, and 200 GeV, and in $p+p$ and $d$+Au collisions at $sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity ($|y|<0.5$) $phi$ meson transverse momentum ($p_{T}$) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the $p_{T}$ spectra from $p+p$, $d$+Au and peripheral Au+Au collisions show power-law tails at intermediate and high $p_{T}$ and are described better by Levy distributions. The constant $phi/K^-$ yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $phi$ production at RHIC. The $Omega/phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}sim 4$ GeV/$c$, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $phi$ meson with respect to other hadrons in Au+Au collisions at $sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.