Do you want to publish a course? Click here

Superallowed nuclear beta decays: A critical survey with tests of CVC and the standard model

109   0   0.0 ( 0 )
 Added by Ian Towner
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

A complete and critical survey is presented of all half-life, decay-energy and branching-ratio measurements related to 20 superallowed decays; no measurements are ignored, though some are rejected for cause and others updated. A new calculation of the statistical rate function is described and experimental ft values determined. The associated theoretical corrections needed to convert these results into Ft values are discussed, and careful attention is paid to the origin and magnitude of their uncertainties. As an exacting confirmation of the conserved vector current hypothesis, the Ft values are seen to be constant to 3 parts in 10^4. These data are also used to set new limits on any possible scalar interactions or right-hand currents. The average Ft value obtained from the survey, when combined with the muon lifetime, yields the CKM matrix element Vud = 0.9738(4); and the unitarity test on the top row of the matrix becomes |Vud|^2 + |Vus|^2 + |Vub|^2 = 0.9966(14) using the PDGs currently recommended values for Vus and Vub. We discuss the priorities for future theoretical and experimental work with the goal of making the CKM unitarity test more definitive.



rate research

Read More

136 - I. S. Towner 2002
The measured $ft$-values for superallowed $0^{+} to 0^{+}$ nuclear $beta$-decay can be used to obtain the value of the vector coupling constant and thus to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. An essential requirement for this test is accurate calculations for the radiative and isospin symmetry-breaking corrections that must be applied to the experimental data. We present a new and consistent set of calculations for the nuclear-structure-dependent components of these corrections. These new results do not alter the current status of the unitarity test -- it still fails by more than two standard deviations -- but they provide calculated corrections for eleven new superallowed transitions that are likely to become accessible to precise measurements in the future. The reliability of all calculated corrections is explored and an experimental method indicated by which the structure-dependent corrections can be tested and, if necessary, improved.
120 - J.C. Hardy 1998
Superallowed $0^+ to 0^+$ nuclear beta decay provides a direct measure of the weak vector coupling constant, $GV$. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of $^{10}$C to that of $^{54}$Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and conclude that there are no evident defects although the Coulomb correction, $delta_C$, depends sensitively on nuclear structure and thus needs to be constrained independently. The potential importance of a result in disagreement with unitarity, clearly indicates the need for further work to confirm or deny the discrepancy. We examine the options and recommend priorities for new experiments and improved calculations. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible with existing facilities.
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismatch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
103 - J.C. Hardy , I.S. Towner 2018
Nuclear beta decays between (J^pi,T) = (0^+,1) analog states yield the best value for the Vud element of the Cabibbo-Kobayashi-Maskawa matrix. Current world data establish the corrected Ft values of 14 separate superallowed transitions to a precision of order 0.1% or better. The validity of the small theoretical correction terms is confirmed by excellent consistency among the 14 Ft values and by recent measurements that compare pairs of mirror superallowed transitions. With consistency established, the results now yield |Vud| = 0.97420(21). This value is consistent with the considerably less precise results obtained from beta decays of the neutron, the pion and T=1/2 mirror nuclei, which are hampered by experimental challenges.
162 - J.C. Hardy 2005
A recent Penning-trap measurement of the masses of 46V and 46Ti leads to a Qec value that disagrees significantly with the previously accepted value, and destroys overall consistency among the nine most precisely characterized T=1 superallowed beta emitters. This raises the possibility of a systematic discrepancy between Penning-trap measurements and the reaction-based measurements upon which the Qec values depended in the past. We carefully re-analyze (n,gamma) and (p,gamma) reaction measurements in the 24 leq A leq 28 mass region, and compare the results to very precise Penning-trap measurements of the stable nuclei 24Mg, 26Mg and 28Si. We thus determine upper limits to possible systematic effects in the reaction results, and go on to establish limits for the mass of radioactive 26Al, to which future on-line Penning-trap measurements can be compared. We stress the urgency of identifying or ruling-out possible systematic effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا