Do you want to publish a course? Click here

Formation of hot heavy nuclei in supernova explosions

178   0   0.0 ( 0 )
 Added by Alexander Botvina
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out that during the supernova II type explosion the thermodynamical condition of stellar matter between the protoneutron star and the shock front corresponds to the nuclear liquid-gas phase coexistence region, which can be investigated in nuclear multifragmentation reactions. We have demonstrated, that neutron-rich hot heavy nuclei can be produced in this region. The production of these nuclei may influence dynamics of the explosion and contribute to the synthesis of heavy elements.

rate research

Read More

Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
We present an update of the event generator based on the three-fluid dynamics (3FD), complemented by Ultra-relativistic Quantum Molecular Dynamics (UrQMD) for the late stage of the nuclear collision~-- the three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS). Two modifications are introduced. The THESEUS table of hadronic resonances is made consistent with that of the underlying 3FD model. The main modification is that the generator is extended to simulate the light-nuclei production in relativistic heavy-ion collisions, on the equal basis with hadrons. These modifications are illustrated by applications to the description of available experimental data. The first run of the updated generator revealed a good reproduction of the NA49 data on the light nuclei. The reproduction is achieved without any extra parameters, while the coalescence approach in 3FD requires special tuning of the coalescence coefficients for each light nucleus separately.
105 - A.S. Botvina 2006
During the collapse of massive stars, and the supernova type-II explosions, stellar matter reaches densities and temperatures which are similar to the ones obtained in intermediate-energy nucleus-nucleus collisions. The nuclear multifragmentation reactions can be used for determination of properties of nuclear matter at subnuclear densities, in the region of the nuclear liquid-gas phase transition. It is demonstrated that the modified properties of hot nuclei (in particular, their symmetry energy) extracted from the multifragmentation data can essentially influence nuclear composition of stellar matter. The effects on weak processes, and on the nucleosynthesis are also discussed.
Rapidity-odd directed flow in heavy ion collisions can originate from two very distinct sources in the collision dynamics i. an initial tilt of the fireball in the reaction plane that generates directed flow of the constituents independent of their charges, and ii. the Lorentz force due to the strong primordial electromagnetic field that drives the flow in opposite directions for constituents carrying unlike sign charges. We study the directed flow of open charm mesons $D^0$ and $overline{D^0}$ in the presence of both these sources of directed flow. The drag from the tilted matter dominates over the Lorentz force resulting in same sign flow for both $D^0$ and $overline{D^0}$, albeit of different magnitudes. Their average directed flow is about ten times larger than their difference. This charge splitting in the directed flow is a sensitive probe of the electrical conductivity of the produced medium. We further study their beam energy dependence; while the average directed flow shows a decreasing trend, the charge splitting remains flat from $sqrt{s_{NN}}=60$ GeV to $5$ TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا