Do you want to publish a course? Click here

The 2p-2h electromagnetic response in the quasielastic peak and beyond

57   0   0.0 ( 0 )
 Added by Arturo De Pace
 Publication date 2003
  fields
and research's language is English
 Authors A. De Pace




Ask ChatGPT about the research

The contribution to the nuclear transverse response function R_T arising from two particle-two hole (2p-2h) states excited through the action of electromagnetic meson exchange currents (MEC) is computed in a fully relativistic framework. The MEC considered are those carried by the pion and by Delta degrees of freedom, the latter being viewed as a virtual nucleonic resonance. The calculation is performed in the relativistic Fermi gas model in which Lorentz covariance can be maintained. All 2p-2h many-body diagrams containing two pionic lines that contribute to R_T are taken into account and the relative impact of the various components of the MEC on R_T is addressed. The non-relativistic limit of the MEC contributions is also discussed and compared with the relativistic results to explore the role played by relativity in obtaining the 2p-2h nuclear response.



rate research

Read More

223 - A. De Pace 2004
Following recent studies of inclusive electron scattering from nuclei at high energies which focused on two-nucleon emission mediated by meson-exchange currents, in this work the superscaling behavior of such contributions is investigated. Comparisons are made with existing data below the quasielastic peak where at high momentum transfers scaling of the second kind is known to be excellent and scaling of the first kind is good, in the proximity of the peak where both 1p-1h and 2p-2h contributions come into play, and above the peak where inelasticity becomes important and one finds scaling violations of the two kinds.
We analyze the density dependence of the contribution of meson-exchange currents to the lepton-nucleus inclusive cross section in the two-particle two-hole channel. The model is based on the Relativistic Fermi Gas, where each nucleus is characterized by its Fermi momentum $k_F$. We find that the 2p-2h nuclear response functions at their peaks scale as $A k_F^2$ for Fermi momentum going from 200 to 300 MeV/c and momentum transfer $q$ from $2k_F$ to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as $A/k_F$. Additionally, the deep scaling region is also discussed and there the usual scaling behavior is found to be preferable.
The effects of the phonon-phonon coupling on the beta-decay rates of neutron-rich nuclei are studied in a microscopic model based on Skyrme-type interactions. The approach uses a finite-rank separable approximation of the Skyrme-type particle-hole (p-h) residual interaction. Very large two-quasiparticle spaces can thus be treated. A redistribution of the Gamow-Teller (G-T) strength is found due to the tensor correlations and the 2p-2h fragmentation of G-T states. As a result, the beta-decay half-lives are decreased significantly. Using the Skyrme interaction SGII together with a volume-type pairing interaction we illustrate this reduction effect by comparing with available experimental data for the Ni isotopes and neutron-rich N=50 isotones. We give predictions for 76Fe and 80Ni in comparison with the case of the doubly-magic nucleus 78Ni which is an important waiting point in the r-process.
180 - C. Barbieri , N. Rocco , V. Som`a 2019
Neutron and proton spectral functions of $^{40}$Ar, $^{40}$Ca, and $^{48}$Ti isotopes are computed using the ab initio self-consistent Greens function approach. The resulting radii and charge distributions are in good agreement with available experimental data. The spectral functions of Ar and Ti are then utilized to calculate inclusive ($e$,$e$) cross sections within a factorization scheme and are found to correctly reproduce the recent Jefferson Lab measurements. Based on these successful agreements, the weak charged and neutral current double-differential cross sections for neutrino-$^{40}$Ar scattering are predicted in the quasielastic region. Results obtained by replacing the (experimentally inaccessible) neutron spectral distribution of $^{40}$Ar with the (experimentally accessible) proton distribution of $^{48}$Ti are compared and the accuracy of this approximation is assessed.
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $sigma$-model together with weak excitation of the $Delta(1232)$ resonance and its subsequent decay into $Npi$. With these currents we compute the five 2p-2h response functions contributing to $( u_l,l^-)$ and $(overline{ u}_l,l^+)$ reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace {em et al.,} Nuclear Physics A 726 (2003) 303. Thus our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا