No Arabic abstract
In interpreting the SNO experiments, accurate estimates of the u d reaction cross sections are of great importance. In our recent work, we have improved our previous calculation by updating some of its inputs and by incorporating the results of a recent effective-field-theoretical calculation. The new cross sections are slightly (sim 1%) larger than the previously reported values. It is reasonable to assign 1% uncertainty to the u d cross sections reported here; this error estimate does not include radiative corrections.
We study breakup of the deuteron induced by neutrinos in the neutral $ u dto u np$, $bar{ u} dto bar{ u} np$ and the charged $bar{ u} dto e^+ n n$, $ u dto e^- pp$ processes. Pionless effective field theory with dibaryon fields is used to calculate the total cross sections for neutrino energies $E_ u$ from threshold to 20 MeV. Amplitudes are expanded up to next-to-leading order, and the partial wave is truncated at $P$-waves. The Coulomb interaction between two protons is included nonperturbatively in the reaction amplitudes, and an analytic expression of the amplitudes is obtained. The contribution of the next-to-leading order to the total cross section is in the range of 5.2$-$9.9% in magnitude, and that of the $P$-wave is 2.4$-$2.8% at $E_ u = 20$ MeV. Uncertainty arising from an axial isovector low-energy constant is estimated to be on the order of 1%.
The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is shown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner$ u$a experiment are made for pion spectra, averaged over NuMI neutrino and antineutrino fluxes.
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the resonances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
We present neutrino capture cross sections on 13C at supernova neutrino energies, up to 50 MeV. For both charged-current and neutral-current reactions partial cross sections are calculated using statistical Hauser-Feschbach method. Coherent elastic neutrino scattering cross section for a 13C target is also provided.
The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are performed in the local density approximation (LDA) taking into account the effects due to Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in the charged current reactions has also been included. The numerical results for the energy dependence of the cross-section $sigma(E)$ as well as the flux averaged cross-section and event rates for the charged lepton production in the case of some supernova neutrino/antineutrino fluxes recently discussed in the literature have been presented. We have also given the flux-averaged angular and energy distributions of the charged leptons corresponding to these fluxes.