Do you want to publish a course? Click here

Parity Violating Interactions and Currents in the Deuteron

92   0   0.0 ( 0 )
 Added by Joseph Carlson
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We investigate parity-violating asymmetries in polarized n p radiative capture, and deuteron electro-disintegration in quasi-elastic kinematics, using the DDH model for the parity-violating nucleon-nucleon interaction. We find dramatic cancellations between the asymmetries induced by the parity-violating interaction and those arising from the associated parity-violating pion-exchange currents. In np capture, the model-dependence of the result is nevertheless quite small because of constraints arising through the Siegert evaluation of the relevant E1 matrix element. In quasi-elastic electron scattering these processes are found to be insignificant comared to the asymmetry produced by the gamma-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects of weak-interaction physics associated with parity violation in the np system.



rate research

Read More

Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.
205 - D. Wang , K. Pan , R. Subedi 2014
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
410 - D. Wang , K. Pan , R. Subedi 2013
We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $gamma Z$ interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the $gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements.
Chiral effective field theory (ChEFT) is a modern framework to analyze the properties of few-nucleon systems at low energies. It is based on the most general effective Lagrangian for pions and nucleons consistent with the chiral symmetry of QCD. For energies below the pion-production threshold it is possible to eliminate the pionic degrees of freedom and derive nuclear potentials and nuclear current operators solely in terms of the nucleonic degrees of freedom. This is very important because, despite a lot of experience gained in the past, the consistency between two-nucleon forces, many-nucleon forces and the corresponding current operators has not been achieved yet. In this presentation we consider the recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to leading order of the chiral expansion. These operators do not contain any free parameters. We study their role in the deuteron photodisintegration reaction and compare our predictions with experimental data. The bound and scattering states are calculated using five different chiral N2LO nucleon-nucleon (NN) potentials which allows to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the reference predictions based on the AV18 NN potential and the current operator (partly) consistent with this force.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا