Spin-polarized states of nuclear matter


Abstract in English

The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon $E_A(delta)$ calculated in the full range of spin polarization ${delta} = frac{rho_{uparrow}-rho_{downarrow}}{rho}$ for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter $G_0$. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two body force. The EOS is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.

Download