Do you want to publish a course? Click here

The extent of strangeness in equilibration in quark-gluon plasma

75   0   0.0 ( 0 )
 Added by Dipali Pal
 Publication date 2002
  fields
and research's language is English
 Authors Dipali Pal




Ask ChatGPT about the research

The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy ion collisions is studied with initial conditions obtained from the Self Screened Parton Cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with number of participants.



rate research

Read More

129 - Berndt Muller 2011
I review some aspects of the role of strange quarks in hot QCD matter and as probes of quark deconfinement at high temperature.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
Jets are a promising way to probe the non-equilibrium physics of quark-gluon plasma (QGP). We study how an out-of-equilibrium medium induces a jet particle to emit gluons. Evaluation of the emission rate is complicated by Weibel instabilities which lead to an exponential growth of chromomagnetic fields. Deriving a quantum field theoretical description of an unstable QGP medium, we show that the chromomagnetic fields deflect jet particles during the gluon emission.
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up to a factor of 5 at high momenta. To investigate the origin of this large theoretical uncertainty, a systematic comparison of heavy-quark transport coefficients is carried out between various transport models. Within a common scheme devised for the nuclear modification factor of charm quarks in a brick medium of a quark-gluon plasma, the systematic uncertainty of the extracted drag coefficient among these models is shown to be reduced to a factor of 2, which can be viewed as the smallest intrinsic systematical error band achievable at present time. This indicates the importance of a realistic hydrodynamic evolution constrained by bulk hadron spectra and of heavy-quark hadronization for understanding the final heavy-flavor hadron spectra and extracting heavy-quark drag coefficient. The transverse transport coefficient is less constrained due to the influence of the underlying mechanism for heavy-quark medium interaction. Additional constraints on transport models such as energy loss fluctuation and transverse-momentum broadening can further reduce theoretical uncertainties in the extracted transport coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا