Do you want to publish a course? Click here

Gamma-ray strength functions in thermally excited rotating nuclei

55   0   0.0 ( 0 )
 Added by Jacek Dobaczewski
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

A general discussion and illustration is given of strength functions for rotational transitions in two-dimensional E(gamma_1) x E(gamma_2) spectra. Especially, a narrow component should be proportional to the compound damping width, related to the mixing of basis rotational bands into compound bands with fragmented transition strength. Three E(gamma_1) x E(gamma_2) spectra are made by setting gates on triple coincidences, selecting cascades which feed into specific low-lying bands in the nucleus 168Hf. In each of the gated spectra, we find a ridge, carrying about 100 decay paths. This ridge is ascribed to rotational transitions in the excitation energy range of 1.0 to 1.5 MeV above the yrast line. The FWHM of the ridges are around 40 keV, about a factor of two smaller than calculated on the basis of mixed cranked mean field bands.



rate research

Read More

108 - K.Yoshida , M.Matsuo , Y.R.Shimizu 2000
We construct a microscopic model of thermally excited superdeformed states that describes both the barrier penetration mechanism, leading to the decay-out transitions to normal deformed states, and the rotational damping causing fragmentation of rotational E2 transitions. We describe the barrier penetration by means of a tunneling path in the two-dimensional deformation energy surface, which is calculated with the cranked Nilsson-Strutinsky model. The individual excited superdeformed states and associated E2 transition strengths are calculated by the shell model diagonalization of the many-particle many-hole excitations interacting with the delta-type residual two-body force. The effect of the decay-out on the excited superdeformed states are discussed in detail for $^{152}$Dy, $^{143}$Eu and $^{192}$Hg.
The scandium isotopes 44,45Sc have been studied with the 45Sc(3He,alpha gamma)44Sc and 45Sc(3He,3He gamma)45Sc reactions, respectively. The nuclear level densities and gamma-ray strength functions have been extracted using the Oslo method. The experimental level densities are compared to calculated level densities obtained from a microscopic model based on BCS quasiparticles within the Nilsson level scheme. This model also gives information about the parity distribution and the number of broken Cooper pairs as a function of excitation energy. The experimental gamma-ray strength functions are compared to theoretical models of the E1, M1, and E2 strength, and to data from (gamma,n) and (gamma,p) experiments. The strength functions show an enhancement at low gamma energies that cannot be explained by the present, standard models.
The gamma-strength functions and level densities in the quasi-continuum of 147;149Sm isotopes have been extracted from particle-coincidences using the Oslo method. The nuclei of interest were populated via (p,d) reactions on pure 148;150Sm targets and the reaction products were recorded by the Hyperion array. An upbend in the low-energy region of the gSF has been observed. The systematic analysis of the gSF for a range of Sm isotopes highlights the interplay between scissors mode and the upbend. Shell-model calculations show reasonable agreement with the experimental gSFs and confirm the correspondence between the upbend and scissors mode.
123 - V.A. Plujko 1999
A closed-form thermodynamic pole approach,TPA, is developed for average description of the E1 radiative strength functions using the microcanonical ensemble for initial states. A semiclassical description of the collective excitation damping in this method is based on modern physical notion on the relaxation processes in Fermi systems.The TPA model gives rather accurate means of simultaneous description of the gamma- decay and photoabsorption strength functions in the medium and heavy nuclei. It is able to cover a relatively wide energy interval, ranging from zeroth gamma-ray energy to values above GDR peak energy, as compared with the others closed-form models for calculation of the E1 strength.
252 - Masayuki Matsuzaki 2011
Distribution of the two phonon $gamma$ vibrational collectivity in the rotating triaxial odd-$A$ nucleus, $^{103}$Nb, that is one of the three nuclides for which experimental data were reported recently, is calculated in the framework of the particle vibration coupling model based on the cranked shell model plus random phase approximation. This framework was previously utilized for analyses of the zero and one phonon bands in other mass region and is applied to the two phonon band for the first time. In the present calculation, three sequences of two phonon bands share collectivity almost equally at finite rotation whereas the $K=Omega+4$ state is the purest at zero rotation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا