No Arabic abstract
We study the local equilibrium in the central $V = 125$ fm$^3$ cell in heavy-ion collisions at energies from 10.7 AGeV (AGS) to 160 AGeV (SPS) calculated in the microscopic transport model. In the present paper the hadron yields and energy spectra in the cell are compared with those of infinite nuclear matter, as calculated within the same model. The agreement between the spectra in the two systems is established for times $t geq 10$ fm/$c$ in the central cell. The cell results do not deviate noticeably from the infinite matter calculations with rising incident energy, in contrast to the apparent discrepancy with predictions of the statistical model (SM) of an ideal hadron gas. The entropy of this state is found to be very close to the maximum entropy, while hadron abundances and energy spectra differ significantly from those of the SM.
Based on a generalized side-jump formalism for massless chiral fermions, which naturally takes into account the spin-orbit coupling in the scattering of two chiral fermions and the chiral vortical effect in a rotating chiral fermion matter, we have developed a covariant and total angular momentum conserved chiral transport model to study both the global and local polarizations of this matter. For a system of massless quarks of random spin orientations and finite vorticity in a box, we have demonstrated that the model can exactly conserve the total angular momentum of the system and dynamically generate the quark spin polarization expected from a thermally equilibrated quark matter. Using this model to study the spin polarization in relativistic heavy-ion collision, we have found that the local quark spin polarizations depend strongly on the reference frame where they are evaluated as a result of the nontrivial axial charge distribution caused by the chiral vortical effect. We have further shown that because of the anomalous orbital or side-jump contribution to the quark spin polarization, the local quark polarizations calculated in the medium rest frame are qualitatively consistent with the local polarizations of Lambda hyperons measured in experiments.
We show that the inclusion of a recently found additional term of the spin polarization vector at local equilibrium which is linear in the symmetrized gradients of the velocity field, and the assumption of hadron production at constant temperature restore the quantitative agreement between hydrodynamic model predictions and local polarization measurements in relativistic heavy ion collisions at $sqrt s_{NN}= 200$ GeV. The longitudinal component of the spin polarization vector turns out to be very sensitive to the temperature value, with a good fit around 155 MeV. The implications of this finding are discussed.
In this work, the production of photons through binary scattering processes is investigated for equilibrated hadronic systems. More precisely, a non-equilibrium hadronic transport approach to describe relativistic heavy-ion collisions is benchmarked with respect to photon emission. Cross sections for photon production in $pi + rho to pi + gamma$ and $pi + pi to rho + gamma$ scattering processes are derived from an effective chiral field theory and implemented into the hadronic transport approach, SMASH (Simulating Many Accelerated Strongly-interacting Hadrons). The implementation is verified by systematically comparing the thermal photon rate to theoretical expectations. Further, the impact of form factors is discussed, scattering processes mediated by $omega$ mesons are found to contribute significantly to the total photon production. Several comparisons of the yielded photon rates are performed: to parametrizations of the very same rates, as used in hydrodynamic simulations, to previous works relying on different cross sections for the production of direct photons from the hadronic stage, and to partonic rates. Finally, the impact of considering the finite width of the $rho$ meson is investigated, where a significant enhancement of photon production in the low-energy region is observed. This benchmark is the first step towards a consistent treatment of photon emission in hybrid hydrodynamics+transport approaches and a genuine dynamical description.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
We present a simple description of the energy density profile created in a nucleus-nucleus collision, motivated by high-energy QCD. The energy density is modeled as the sum of contributions coming from elementary collisions between localized charges and a smooth nucleus. Each of these interactions creates a sharply-peaked source of energy density falling off at large distances like $1/r^2$, corresponding to the two-dimensional Coulomb field of a point charge. Our model reproduces the one-point and two-point functions of the energy density field calculated in the framework of the color glass condensate effective theory, to leading logarithmic accuracy. We apply it to the description of eccentricity fluctuations. Unlike other existing models of initial conditions for heavy-ion collisions, it allows us to reproduce simultaneously the centrality dependence of elliptic and triangular flow.