Do you want to publish a course? Click here

Pertinent Dirac structure for QCD sum rules of meson-baryon coupling constants

102   0   0.0 ( 0 )
 Added by Takumi Doi
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

Using general baryon interpolating fields $J_B$ for $B= N, Xi, Sigma, $ without derivative, we study QCD sum rules for meson-baryon couplings and their dependence on Dirac structures for the two-point correlation function with a meson $iint d^4x e^{iqx} bra 0|{rm T}[J_B(x)bar{J}_B(0)] |{cal M}(p)ket$. Three distinct Dirac structures are compared: $igamma_5$, $igamma_5fslash{p}$, and $gamma_5sigma_{mu u}q^mu p^ u$ structures. From the dependence of the OPE on general baryon interpolating fields, we propose criteria for choosing an appropriate Dirac structure for the coupling sum rules. The $gamma_5sigma_{mu u}q^mu p^ u$ sum rules satisfy the criteria while the $igamma_5$ sum rules beyond the chiral limit do not. For the $igamma_5fslash{p}$ sum rules, the large continuum contributions prohibit reliable prediction for the couplings. Thus, the $gamma_5sigma_{mu u}q^mu p^ u$ structure seems pertinent for realistic predictions. In the SU(3) limit, we identify the OPE terms responsible for the $F/D$ ratio. We then study the dependence of the ratio on the baryon interpolating fields. We conclude the ratio $F/D sim 0.6-0.8$ for appropriate choice of the interpolating fields.



rate research

Read More

197 - G. Erkol , M. Oka , Th. A. Rijken 2006
The external-field QCD Sum Rules method is used to evaluate the coupling constants of the light-isoscalar scalar meson (``sigma or epsilon) to the Lambda, Sigma, and Xi baryons. It is shown that these coupling constants as calculated from QCD Sum Rules are consistent with SU(3)-flavor relations, which leads to a determination of the F/(F+D) ratio of the scalar octet assuming ideal mixing: we find alpha_s equiv F/(F+D)=0.55. The coupling constants with SU(3) breaking effects are also discussed.
266 - M.R. Seyedhabashy 2019
In this research, the strong coupling constants of the $D^*D_s^*K$, $D_1D_{s1}K$, $D^*D_sK$ and $D_1D_{s0}^*K$ vertices are evaluated, using the three-point QCD sum rules. In order to calculate the coupling constant of each vertex, either the kaon or the charmed meson is considered as the off-shell particle. The basic $g$ parameter, in the heavy quark effective theory, is related to the coupling constants of $D^*D_s^*K$ and $D^*D_sK$. Our obtained value for $g$ parameter is $0.24pm 0.09$, which is in good agreement with the lower limits of the other existing predictions.
144 - G. Erkol , M. Oka 2007
We evaluate the pion-nucleon and the pion-Delta sigma terms by employing the method of quantum chromodynamics (QCD) sum rules. The obtained value of the pion-nucleon sigma term is compatible with the larger values already anticipated by the recent calculations. It is also found that the pion-Delta sigma term is as large as the pion-nucleon sigma term.
131 - T. M. Aliev 2009
Using the most general form of the interpolating current of the baryons, the strong coupling constants of the light vector mesons with the octet baryons are calculated within the light cone QCD sum rules. The SU(3)_f symmetry breaking effects are taken into account in the calculations. It is shown that each of the electric and magnetic coupling constants can be described in terms of three universal functions. A detailed comparison of the results of this work on aforementioned couplings with the existing theoretical results is presented.
138 - G. Erkol , M. Oka , G. Turan 2008
The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of quantum chromodynamics (QCD) sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا