Do you want to publish a course? Click here

The role of $ u$-induced reactions on lead and iron in neutrino detectors

337   0   0.0 ( 0 )
 Added by Edwin Kolbe
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We have calculated cross sections and branching ratios for neutrino induced reactions on ^{208}Pb and ^{56}Fe for various supernova and accelerator-relevant neutrino spectra. This was motivated by the facts that lead and iron will be used on one hand as target materials in future neutrino detectors, on the other hand have been and are still used as shielding materials in accelerator-based experiments. In particular we study the inclusive ^{56}$Fe( u_e,e^-)$^{56}Co and ^{208}$Pb( u_e,e^-)$^{208}Bi cross sections and calculate the neutron energy spectra following the decay of the daughter nuclei. These reactions give a potential background signal in the KARMEN and LSND experiment and are discussed as a detection scheme for supernova neutrinos in the proposed OMNIS and LAND detectors. We also study the neutron-emission following the neutrino-induced neutral-current excitation of ^{56}Fe and ^{208}Pb.



rate research

Read More

Background: Long-baseline experiments such as the planned Deep Underground Neutrino Experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement with data from neutrino- and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus descriptions a good theoretical description of inclusive electron-, neutrino- and antineutrino-nucleus data over a wide range of energies, different neutrino flavors and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses. end{description}
78 - M. Sin , R. Capote , M.W. Herman 2019
Comprehensive calculations of cross sections of photon induced reactions on $^{233-238}$U targets for incident photon energies from 3 up to 30 MeV are undertaken with the statistical model code EMPIRE-3.2 Malta. Results are compared with the experimental data from EXFOR and with the current evaluations. The differences and the similarities between the models and parameters used in calculations of photon- and neutron-induced reactions on the same nuclei are discussed with focus on fission. The role of the extended optical model for fission in improving the description of the measured data and in determining consistent sets of barrier parameters is pointed out.
56 - D. Vale , T. Rauscher , 2015
We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for $^{56}$Fe and $^{208}$Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons $mathrm{p}(bar{ u}_mathrm{e},mathrm{e}^{+})mathrm{n}$ are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of $ u_mathrm{e}$- and $bar{ u}_mathrm{e}$-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ($^{208}$Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.
364 - A.S. Botvina 2008
In nuclear reactions induced by hadrons and ions of high energies, nuclei can disintegrate into many fragments during a short time (~100 fm/c). This phenomenon known as nuclear multifragmentation was under intensive investigation last 20 years. It was established that multifragmentation is an universal process taking place in all reactions when the excitation energy transferred to nuclei is high enough, more than 3 MeV per nucleon, independently on the initial dynamical stage of the reactions. Very known compound nucleus decay processes (sequential evaporation and fission), which are usual for low energies, disappear and multifragmentation dominates at high excitation energy. For this reason, calculation of multifragmentation must be carried on in all cases when production of highly excited nuclei is expected, including spallation reactions. From the other hand, one can consider multifragmentation as manifestation of the liquid-gas phase transition in finite nuclei. This gives way for studying nuclear matter at subnuclear densities and for applications of properties of nuclear matter extracted from multifragmentation reactions in astrophysics. In this contribution, the Statistical Multifragmentation Model (SMM), which combines the compound nucleus processes at low energies and multifragmentation at high energies, is described. The most important ingredients of the model are discussed.
211 - O. Lalakulich , K. Gallmeister , 2012
Background: Nuclear effects can have a significant impact on neutrino-nucleus interactions. In particular, data from neutrino experiments with broad energy distributions require complex theoretical models that are able to take all the relevant channels into account as well as incorporate nuclear effects in both initial and final-state interactions. Purpose: We investigate neutrino and antineutrino scattering on iron and carbon in the energy range from 1 to 30 GeV, which is relevant to current and coming experiments (MINOS, NOvA, and Minerva). Method: The Giessen Boltzmann--Uehling--Uhlenbeck (GiBUU) model, which implements all reaction channels relevant for neutrino energies under consideration, is used for an investigation of neutrino-nucleus reactions. Results: Our calculations are compared with the recent NOMAD and MINOS data for the integrated inclusive cross sections. Predictions are made for the differential cross sections for semiinclusive final states (pions, kaons, and nucleons) for the MINOS and NOvA beams. Conclusions: Nuclear effects in the initial-state interactions may slightly change the inclusive nuclear cross section as compared to the free nucleon ones. Final-state interactions noticeably change the spectra of the outgoing hadrons. In the Minerva and NOvA experiments these effects should be visible in the kinetic energy distributions of the final pions, kaons, and nucleons. Secondary interactions play an important role for strangeness production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا