Do you want to publish a course? Click here

On dipole compression modes in nuclei

127   0   0.0 ( 0 )
 Added by Gianluca Col\\`o
 Publication date 2000
  fields
and research's language is English
 Authors G. Colo`




Ask ChatGPT about the research

Isoscalar dipole strength distributions in spherical medium- and heavy-mass nuclei are calculated within random phase approximation (RPA) or quasiparticle RPA. Different Skyrme-type interactions corresponding to incompressibilities in the range 200 - 250 MeV are used. The results are discussed in comparison with existing data on isoscalar giant dipole resonances. Two main issues are raised, firstly the calculated giant resonance energies are somewhat higher than the observed ones, and secondly a sizable fraction of strength is predicted below 20 MeV which needs to be experimentally confirmed.



rate research

Read More

The isoscalar giant monopole resonances (ISGMR) and giant dipole resonances (ISGDR) in medium-heavy nuclei are investigated in the framework of HF+RPA and HF-BCS+QRPA with Skyrme effective interactions. It is found that pairing has little effect on these modes. It is also found that the coupling of the RPA states to 2p-2h configurations results in about (or less than) 1 MeV shifts of the resonance energies and at the same time gives the correct total widths. For the ISGMR, comparison with recent data leads to a value of nuclear matter compression modulus close to 215 MeV. However, a discrepancy between calculated and measured energies of the ISGDR in $^{208}$Pb is found and remains an open problem.
The nucleus is one of the most multi-faceted many-body systems in the universe. It exhibits a multitude of responses depending on the way one probes it. With increasing technical advancements of beams at the various accelerators and of detection systems the nucleus has, over and over again, surprised us by expressing always new ways of organized structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus we discuss in the present review. We shall not just limit ourselves to presenting the by now very large data set that has been obtained in the last two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5 - 9 MeV in deformed nuclei, nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in spherical nuclei. To the contrary, we put the experimental evidence in the perspectives of understanding the atomic nucleus and its various structures of well-organized modes of motion and thus enlarge our discussion to more general fermion and bosonic many-body systems.
258 - S.Q.Zhang , I.Bentley , S.Brant 2008
Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.
114 - Kenichi Yoshida 2020
Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic) dipole resonance (SDR). Purpose: I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic features as an isovector mode of excitation. Methods: The nuclear energy-density functional method is employed for calculating the response functions based on the Skyrme--Kohn--Sham--Bogoliubov method and the proton-neuton quasiparticle-random-phase approximation. Results: The deformation splitting into $K=0$ and $K=pm 1$ components occurs in the charge-changing channels and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of each $K$-component. A qualitative argument on the strength distributions for each component is given based on the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei. Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitions as in the neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in spherical systems.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {alpha}-decay and b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {alpha}-decay, however they are very much unstable against b{eta} -decay. The life time of these nuclei predicted to be tens of second against b{eta} -decay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا