Do you want to publish a course? Click here

Three-cluster nuclear molecules

58   0   0.0 ( 0 )
 Added by Bogdan Dobrescu
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

A three-center phenomenological model able to explain, at least from a qualitative point of view, the difference in the observed yield of a particle-accompanied fission and that of binary fission was developed. It is derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment is obtained by increasing continuously the separation distance, while the radii of the light fragment and of the light particle are kept constant. During the first stage of the deformation one has a two-center evolution until the neck radius becomes equal to the radius of the emitted particle. Then the three center starts developing by decreasing with the same amount the two tip distances. In such a way a second minimum, typical for a cluster molecule, appears in the deformation energy. Examples are presented for $^{240}$Pu parent nucleus emitting $alpha$-particles and $^{14}$C in a ternary process.



rate research

Read More

91 - Y. Fujiwara 2001
We propose a new type of three-cluster equation which uses two-cluster resonating-group-method (RGM) kernels. In this equation, the orthogonality of the total wave-function to two-cluster Pauli-forbidden states is essential to eliminate redundant components admixed in the three-cluster systems. The explicit energy-dependence inherent in the exchange RGM kernel is self-consistently determined. For bound-state problems, this equation is straightforwardly transformed to the Faddeev equation which uses a modified singularity-free T-matrix constructed from the two-cluster RGM kernel. The approximation of the present three-cluster formalism can be examined with more complete calculation using the three-cluster RGM. As a simple example, we discuss three di-neutron (3d) and 3 alpha systems in the harmonic-oscillator variational calculation. The result of the Faddeev calculation is also presented for the 3 system.
116 - D.J. Dean 2003
Using many-body perturbation theory and coupled-cluster theory, we calculate the ground-state energy of He-4 and O-16. We perform these calculations using a no-core G-matrix interaction derived from a realistic nucleon-nucleon potential. Our calculations employ up to two-particle-two-hole coupled-cluster amplitudes.
105 - Hiroki Nakamura 1999
Three-pion interferometry is investigated for new information on the space-time structure of the pion source created in ultra-relativistic heavy-ion collisions. The two- and three-pion correlations are numerically computed for incoherent source functions based on the Bjorken hydrodynamical model, over a wide range of the kinematic variables. New information provided by three-pion interferometry, different from that provided by two-pion interferometry, should appear in the phases of the Fourier transform of the source function. Variables are identified that would be sensitive to the phases and suitable for observation. For a positive, chaotic source function, however, a variation of the three-pion phase is found to be difficult to extract from experiments. Effects of asymmetry of the source function are also examined.
Nuclear electric dipole moments of $^{3}He$ and $^{3}H$ are calculated using Time Reversal Invariance Violating (TRIV) potentials based on the meson exchange theory, as well as the ones derived by using pionless and pionful effective field theories, with nuclear wave functions obtained by solving Faddeev equations in configuration space for the complete Hamiltonians comprising both TRIV and realistic strong interactions. The obtained results are compared with the previous calculations of $^{3}He$ EDM and with time reversal invariance violating effects in neutron-deuteron scattering.
We present a study of the skewness of nuclear matter, which is proportional to the third derivative of the energy per nucleon with respect to the baryon density at the saturation point, in the framework of the Landau-Migdal theory. We derive an exact relation between the skewness, the nucleon effective mass, and two-particle and three-particle interaction parameters. We also present qualitative estimates, which indicate that three-particle correlations play an important role for the skewness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا