No Arabic abstract
Measurements of open charm hadro-production from CERN and Fermilab experiments are reviewed, with particular emphasis on the absolute cross sections and on their A and sqrt(s) dependences. Differential pt and xf cross sections calculated with the Pythia event generator are found to be in reasonable agreement with recent data. The calculations are scaled to nucleus-nucleus collisions and the expected lepton pair yield is deduced. The charm contribution to the low mass dilepton continuum observed by the CERES experiment is found to be negligible. In particular, it is shown that the observed low mass dilepton excess in S-Au collisions cannot be explained by charm enhancement.
The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.
The latest NA49 results on event-by-event transverse momentum fluctuations are presented for central Pb+Pb interactions over the whole SPS energy range (20A - 158A GeV). Two different methods are applied: evaluating the $Phi_{p_{T}}$ fluctuation measure and studying two-particle transverse momentum correlations. The obtained results are compared to predictions of the UrQMD model. The results on the energy dependence are compared to the NA49 data on the system size dependence. The NA61 (SHINE, NA49-future) strategy of searching of the QCD critical end-point is also discussed.
Nuclear stopping has been investigated in central symmetric nuclear collisions at intermediate energies. Firstly, it is found that the isotropy ratio, Riso, reaches a minimum near the Fermi energy and saturates or slowly increases depending on the mass of the system as the beam energy increases. An approximate scaling based on the size of the system is found above the Fermi energy suggesting the increasing role of in-medium nucleon-nucleon collisions. Secondly, the charge density distributions in velocity space, dZ/dvk and dZ/dv?, reveal a strong memory of the entrance channel and, as such, a sizeable nuclear transparency in the intermediate energy range. Lastly, it is shown that the width of the transverse velocity distribution is proportional to the beam velocity.
In this report, we present the measurements of open charm production at mid-rapidity in p+p, d+Au, and Au+Au collisions at RHIC energies. The techniques of direct reconstruction of open charm via its hadronic decay and indirect measurements through its semileptonic decay are discussed. The beam energy dependence of total charm cross section, electron pt spectra, and their comparisons to theoretical calculations, including NLO pQCD, are presented. The electron spectra in p+p, d+Au, and Au+Au collisions at srt=200 GeV show significant variation. The open charm absolute cross section at midrapidity and its centrality dependence are compared to those of inclusive hadrons integrated over $p_{T}>1.5$ GeV/c.
The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $bar{p}$, $Lambda$, $bar{Lambda}$, $Xi^-$ and $bar{Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable agreement between the measured yield for $^3He$ and those predicted by the statistical hadronization model. In addition, new results on $Lambda$ and $bar{Lambda}$ as well as $Xi^-$ production in minimum bias Pb+Pb reactions at 40$A$ GeV and 158$A$ GeV and central C+C, Si+Si and Pb+Pb collisions are presented. The system size dependence of the yields of these hyperons was analysed to determine the evolution of strangeness enhancement relative to elementary p+p collisions.